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Overview We have now seen how to solve games of complete information (perfect
and imperfect) by finding the best responses of the players and then identifying the
strategy profiles that contain only strategies that are bestresponses to each other.
We now investigate best responses in games where players move sequentially. We
develop the concept of credible threats and promises, whichis the fundamental
building block of our theories of the use of force. We incorporate the idea of cred-
ible moves in our refined solution concept of perfect equilibrium and learn how to
find it by backward induction.



Recall that last time we solved the Crisis Game with imperfect information and
found three equilibria, two in pure strategies and one in mixed strategies. I argued
that the mixed-strategy equilibrium can provide us with numerous insights about
general crisis situations: the element of danger that must be present, and how that
relates to the probabilities of a crisis eruption in the firstplace and a crisis ending
in disaster once begun.

A critical feature of the general crisis model was the information available to
the players when they made their decisions. We assumed that neither observes the
other’s move when choosing the optimal strategy. That is, weassumed a game of
imperfect information. We now turn to a variant of the game with perfect informa-
tion: one of the players will observe the first move of its opponent before deciding
what to do.

The optimal solution to this crisis game will allow us to define precisely what we
mean by credible threats and promises. The ideas of credibility and commitment are
the fundamental building blocks in the theories of the use offorce, and so we must
ensure that we understand them thoroughly. The goal is to usea series of simple
models to illustrate each concept, and then investigate possible counter-moves for
players who will try to cope with threats. This will give us a solid background for
the historical analysis of deterrence and compellence as they were used in practice
throughout the Cold War and after.

1 Nash Equilibrium With Perfect Information

1.1 The Crisis Game

Let us now consider the variant of the crisis game under perfect information, as
shown in Figure 1. In this game, player 1 makes the first move, and player 2 ob-
serves it before choosing her response. Perhaps surprisingly, the analysis may ap-
pear a bit more involved. However, after we do the best-response exercise, we shall
learn of a very simple method for solving these games! We shall solve the game
for pure strategy equilibria because this is sufficient to demonstrate the difference
between analyzing the perfect and imperfect information games.
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Figure 1: Crisis Game With Perfect Information.

Player 1 has two pure strategies,S1 D fE; � Eg, and player 2 has four pure
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strategies:S2 D f.e; e/; .e; �e/; .�e; e/; .�e; �e/g. We shall uses1 to denote an
arbitrary pure strategy for player 1. Similarly, we shall use s2 to denote an arbitrary
pure strategy for player 2. For example,s2 D .e; �e/ would be one such strategy.
Let’s find the best responses for both players.

We begin with player 1. What are the best response strategies that he has? To
find the set of best response strategies, we have to analyze all strategies of player 2.
We begin with.e; e/: that is, player 2 would escalate regardless of whether player
1 does. What is the best response to.e; e/? If player 1 chooses the strategyE, then
the outcome will be disaster, and his payoff will be�5. If, on the other hand, player
1 chooses�E, the outcome will be victory for player 2, and the payoff for player 1
will be �1. Because�1 > �5, player 1 prefers to choose�E. That is, the strategy
�E is a best response to player 2’s strategy.e; e/.

What is the best response to.e; �e/? PlayingE produces disaster, with a payoff
of �5, while playing�E produces the status quo with a payoff of0. Since0 > �5,
the best response (again) is to play�E.

What is the best response to.�e; e/? PlayingE produces victory by player 1,
with a payoff of1. Playing�E produces victory by the opponent, with a payoff of
�1. Thus, the best response here isE because it gets1 > �1.

Finally, what is the best response to.�e; �e/? PlayingE produces victory by
player 1 with a payoff of1. Playing�E produces the status quo outcome, with a
payoff of0. Because1 > 0, the best response to this strategy is to playE.

Hence, the best responses by player 1 are:

BR1.s2/ D

(

E if s2 2 f.�e; e/; .�e; �e/g; and

�E if s2 2 f.e; e/; .e; �e/g:

Let’s now look at the best responses for player 2. Again, we have to consider all
possible strategies for player 1. What is the best response toE? Consider the
information set following this action by player 1. If player2 choosese at this
information set, the outcome is disaster, with a payoff of�5. If she chooses�e,
the outcome is capitulation by herself, with a payoff of�1. Since�1 > �5, she
prefers to play�e.

Is then�e a best response tos1 D E? No! The reason is that�e is not a strategy
for player 2! Recall that player 2’s strategies have two components each. What
we conclude from this is that the best response strategy for player 2 must involve
playing�e at the first information set. There aretwo such strategies:.�e; �e/ and
.�e; e/, and either one of these will work. Thus, we see that it is quite possible to
have more than one best response to a particular strategy.

What about the best response to�E? At this information set, choosinge pro-
duces victory by player 2, with a payoff of1. Choosing�e, on the other hand,
produces the status quo with a payoff of0. Since1 > 0, player 2’s best response
must involve choosinge at this information set. There are two strategies that do
this: .e; e/ and.�e; e/.
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Hence, the best responses by player 2 are:

BR2.s1/ D

(

.e; e/ or .�e; e/ if s1 D�E; and

.�e; �e/ or .�e; e/ if s1 D E:

We immediately see something very interesting about player2’s best response. The
strategy.e; �e/ is not a best response to anything player 1 might possibly do.In
other words, there is no action by player 1 that player 2 couldoptimally respond
to with this strategy. This means that we should expect player 2 to never play this
strategy in this game.

Let us now examine the strategy profiles. For example, one possible strategy
profile in this game ishE; .e; �e/i. In this strategy profile, player 1’s strategy isE,
and player 2’s strategy is.e; �e/.

Consider first strategyE. From BR2.E/, we know that it has the best responses
.�e; e/ and.�e; �e/. To which of these two, if any, isE itself a best response?
Looking at BR1.�e; e/, we see thatE is a best response. So, one Nash equilibrium
is hE; .�e; e/i.

Is E a best response to.�e; �e/? Sure it is, and sohE; .�e; �e/i is another
Nash equilibrium. The equilibrium outcome is again capitulation by player 2.

Comparing the two solutions, we see that they have one thing incommon: if
player 1 expects player 2 to submit following escalation, then player 1 will always
escalate because this gives him the best possible outcome (with the highest pay-
off). Conversely, if player 2 expects player 1 to escalate, then she prefers to submit
because doing so, although resulting in capitulation, is still better than escalating
in turn and ending in disaster. In both of these cases, the equilibrium outcome is
victory by player 1. Remember this point, we shall return to it.

Continuing with our examination of profiles, consider now�E. We know that
BR2.� E/ is either.e; e/ or .� e; e/. To which of these is� E itself a best re-
sponse? We have already seen that the best response to.�e; e/ is E, so the profile
h�E; .�e; e/i cannot be Nash equilibrium because player 1’s strategy is not a best
response to player 2’s strategy. However, BR1.e; e/ is � E, and so the profile
h�E; .e; e/i is yet another Nash equilibrium. The see the outcome produced by
this strategy profile, note that in it player 1 submits, and player 2 escalates. The
equilibrium outcome is victory by player 2.

In this equilibrium, player 1 expects that player 2 is going to escalate no matter
what. Given such a strategy, player 1’s optimal course of action is to submit because
even though this would result in capitulation, it would avoid the worst outcome of
disaster. Given that player 1 is expected to submit, player 2’s strategy of escalating
is also optimal.

Thus, the game of perfect information has three Nash equilibria, hE; .�e; e/i,
hE; .�e; �e/i, andh�E; .e; e/i. Let’s think now carefully about what these profiles
mean.
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1.2 Incredible Threats in Equilibrium?

Consider the profileh�E; .e; e/i. Player 1 chooses�E because if he choosesE,
player 2 is going to playe, and the outcome will be disaster. That is, not escalating
is optimal because of player 2’sthreat to escalate if player 1 escalates. However, is
this threatcredible?

It is not. Think about what would happen if player 1 deviated and actually played
E instead. Faced now with escalation, player 2 will prefer to play �e and avoid
disaster. The threat to escalate in response to player 1’s escalation is not credible.
This means that a rational player 1 should not believe it. In other words, player
2’s strategy.e; e/ cannot be optimalif player 1 actually escalates. Player 1 should
believe that player 2 would respond to escalation with submission. But given that
player 2 would capitulate following escalation, then player 1 can do better than
submitting: he can actually escalate. Thus, the original strategy� E cannot be
optimal in turn! In other words,because player 2 observes player 1’s move before
making her choice, player 2 cannot possibly threaten to escalate in response to
escalation.

What just happened here? What happened is the shortcoming of Nash equilib-
rium, which does not consider optimality during the game, only at the beginning of
the game. The profileh�E; .e; e/i is a Nash equilibrium because it is optimal at
the beginning of the game. If player 1 thinks that player 2 would play .e; e/, then
it is optimal to play�E. And since player 1 does not escalate, player 2’s threat to
escalate if player 1 does is never tested. Because player 2 never gets to respond to
escalation, playinge there is optimal. But, of course, player 1 knows all this. He
also knows thatif he actually escalates, player 2 will back down for sure. Unfor-
tunately, Nash equilibrium does not allow us to examine these kinds of conditional
statements.

In fact, h�E; .e; e/i is not the only suspicious solution to the game. Consider
hE; .�e; �e/i. We already know that when player 1 escalates,�e is the optimal
response for player 2. Suppose now that player 1 does not escalate: is�e an optimal
response there? It is not because it yields a payoff of 0 as opposed to a payoff of 1,
which player 2 could get by escalating instead. Thus, thepromise not to escalate if
player 1 does not escalate is not credible either! Again,because player 2 observes
player 1’s move before making her choice, player 2 cannot possibly promise not to
escalate in response to no escalation.

In other words, player 2 can neither threaten to punish escalation by escalating,
nor can she promise to reward restraint by not escalating. Player 2 cannotcredibly
commit to these courses of action. Our original solution concept ofNash equilib-
rium does not take into account the sequence of moves, and is not strong enough to
rule out as unreasonable strategy profiles that include suchincredible threats. What
we really want is a stronger solution concept that would prune these profiles. In-
cidentally, this also demonstrates why we needed to includeall information sets in
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the specification of a strategy: it allows us to identify profiles in which optimality
may depend on unreasonable play at some information set.

1.3 The Escalation Game

Recall our complete information escalation game between a weak defender and a
weak (irresolute) challenger, as shown in Figure 2(a), or between a weak defender
and a tough (resolute) challenger, as shown in Figure 2(b).
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Figure 2: Sequential Escalation Games with a Weak Defender.

Let’s find the pure-strategy Nash equilibria for these two games. We can derive
the best responses but instead we shall take a short-cut to simplify our task. Observe
the following (these hold for both games):

1. If the defender plays�r in some equilibrium, then�e cannot be a part of any
best-response by the challenger. If the defender is sure to capitulate, then any
strategy involving escalation by the challenger would yield him a payoff of
10 whereas any strategy involving�e yields a payoff of0, which is strictly
worse. Therefore, we conclude that�r ) e in any equilibrium.

2. If the defender playsr is some equilibrium, thene cannot be a part of any
best-response by the challenger. If the defender is sure to resist, then esca-
lation will lead either to war (with payoffs�1 if the challenger is tough and
�12 if he is weak) or capitulation (with a payoff of�10). In all cases, the
payoff is negative whereas any strategy with�e yields 0, which is strictly
better. Therefore, we conclude thatr )�e in any equilibrium.

3. If the challenger plays�a in some equilibrium, then�r cannot be a best-
response by the defender. If the challenger is sure to capitulate when resisted,
then the defender will get either10 (the payoff from the challenger’s capitu-
lation if he also escalates) or0 (the payoff from the status quo if he does not).
If the challenger playse, resisting is strictly better than capitulating, which
would yield�10. If the challenger plays�e, then the defender is indifferent
because she would get0 whether she resists or not. However, notice that by
(1), we know that�r ) e in any equilibrium, which implies that if she chose
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�r predicated on her indifference given�e, then the challenger would not
actually pick�e. Therefore, we conclude that�a ) r in any equilibrium.

These three implications are sufficient to give us the solutions to the games. Ob-
serve that from (3) and (2) we obtain� a ) r )� e. In other words, in any
equilibrium in which the challenger plays�a, the defender will playr , which in
turn means that the challenger must be playing�e. Therefore, we have our first
PSNE:h.�e; �a/; ri.

All the remaining solutions must involve the challenger playing a at his second
information set. There are only two possibilities:.e; a/ and.�e; a/. If he plays
.e; a/, then the defender cannot be playingr because by (2) if she did so, the chal-
lenger’s best response must involve�e. Therefore, she must be playing�r , and by
(1) this means the challenger is playinge. Therefore, we have our second PSNE:
h.e; a/; �ri.

Finally, if the challenger plays.�e; a/, then the defender cannot be playing�r

because if she did, (1) tells us that the challenger’s best-response would have to
involvee. Therefore, she must be playingr , and by (2) this means the challenger is
playing�e. Therefore, we have our third, and final, PSNE:h.�e; a/; ri.

Notice now two disturbing things about these solutions. First, the PSNE are the
same for both games. It appears that it does not matter whether the challenger is
weak or tough, Nash equilibrium leads to the same predictions for rational play.
This is a bit odd since we know that a weak challenger would capitulate if resisted
but the tough one will not. Intuitively, we would expect thisto matter for the solu-
tion but at least in PSNE here it does not.

Second, some of the solutions appear suspect. For example, in the PSNEh.�e; a/; ri,
the challenger is successfully deterred from escalating bythe defender’s threat to
resist. However, this threat cannot be credible if the defender really believes that
the challenger would attack when resisted, as specified by his strategy. Hence, the
defender is relying on an incredible threat: if attack is sure to follow her resistance,
then she would capitulate instead, and, knowing this, the challenger would escalate.

The other two PSNE are also suspect depending on whether the challenger is
tough or not. For example, inh.e; a/; �ri, he obtains the defender’s capitulation
by threatening to attack if resisted. However, the weak challenger would never do
so, which means that when the defender knows that he is weak, she will not believe
such a threat. But if she does not believe the threat, then she would certainly resist,
in which case the challenger would not escalate in the first place. Analogously,
in h.�e; �a/; ri, the challenger is deterred by the defender’s threat to resist. This
threat is credible because the challenger is expected to capitulate for sure when
resisted. However, we know that the tough challenger would never do that, which
means that if the defender knows that he is tough, she would certainly capitulate.
But if she does that, then the tough challenger will escalate instead.

Again, PSNE have undesirable properties, and they all hingeon the solution fail-
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ing to pick out the problem that the strategies involve actions that players would not
want to carry out when the contingency arises. We need a stronger solution concept
that takes care of this problem.

2 Perfect Equilibrium

The revision of Nash equilibrium that can handle credible commitments properly is
due to Reinchard Selten (co-winner with Nash of the Nobel Prize) and is technically
known assubgame perfect equilibrium. Intuitively, it requires that the strategies
are not only best responses to each other considered in theirentirety, but also best
responses to each other at any point in the game. That is, the strategies form a
Nash equilibrium in every subgame. Asubgame is any part of the game tree that
(a) begins with a singleton information set, (b) includes all subsequent parts of the
game tree, and (c) never splits information sets. Instead ofdefining subgames more
precisely and messing with technicalities, let’s just think about what this means in
our example.

Consider player 2’s decision following the action by player 1in Figure 1. If
player 1 has escalated, the subgame consists simply of player 2’s choice. In this
subgame there is only one player, so the optimal solution consists of this player’s
action. Because escalation yields�5 and no escalation yields�1, player 2’s optimal
response is to play� e; that is, � e is the Nash equilibrium in this trivial game
without an opponent.

Consider player 2’s decision following non-escalation by player 1. In this sub-
game (again) there is only one player, and so Nash equilibrium is going to consists
of its best action. Because escalation yields 1 and no escalation yields 0, player
2’s best action ise; that ise is the Nash equilibrium in this trivial game without an
opponent.

Thus, the perfection requirement that the strategies form Nash equilibria at all
points in the game demands that player 2’s strategy is.�e; e/ because these actions
are the only possible best responses at the corresponding information sets.

What is then player 1’s best response given that player 2 will play .�e; e/? We
know that BR1.�e; e/ D E. And we further know that among the best responses
to E we have BR2.E/ D .�e; e/. Therefore,hE; .�e; e/i is an equilibrium. Of
course, we already knew that from our original analysis. Thepoint is that it is
the only perfect equilibrium of the crisis game. In other words, it is the only
equilibrium in which all players’ threats and promises are credible. All perfect
equilibria are necessarily Nash equilibria but the converse (as we have just seen) is
not true: there are many Nash equilibria that are not perfect.

By applying the perfection criterion, we have eliminated theunreasonable solu-
tionsh�E; .e; e/i andhE; .�e; �e/i. That is, we should not expect rational players
to ever play these strategies. We have concluded thathE; .�e; e/i is the only rea-
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sonable expectation we should have about the way the game is going to be played.
This immediately demonstrates the importance ofstrategic moves: player 1 can

guarantee its most preferred outcome bycompelling player 2 to back down. Con-
versely, player 2 cannotdeter player 1 from escalating because it cannot credibly
escalate in return. If player 1 commits to escalation, player 2 has no choice but
back down. Interestingly, player 1’s position here is enhanced by leaving the ulti-
mate choice to its opponent! We shall have more to say about strategic moves later.
Let’s first learn a simple method for solving complete information games.

3 Backward Induction

If you have a game of perfect information, then you don’t haveto go through the
best-response exercise to find the perfect equilibria. There is a much easier method
calledbackward induction, which is really a way to look forward and reason back-
ward.1 That is, to determine what you should do today, you need to look at the con-
sequences your various actions will have tomorrow, and thenpick the one with the
best consequences. More to the point, it involves looking forward to determine if
your opponent will carry out the action he is threatening/promising to and deciding
whether the threat/promise is credible. The easiest way to understand the process is
through an example.

Consider the sequential escalation game with the weak challenger in Figure 2(a).
Determining the credibility of an action boils down the determining whether the
player would actually want to choose it if given a chance. Forexample, would
playerD prefer to resist ifC actually escalated. Obviously, the answer would de-
pend on whetherC would prefer to attack ifD actually resists. Thus, to determine
the credibility of the promise to resist byD, we have to evaluate the credibility of
C ’s threat to attack. This is why the process is called “looking forward.” It is also
called “reasoning backward” because once we’ve determinedthe credibility ofC ’s
threat to attack, we can go back and figure out the credibilityof D’s promise to
resist, and so on.

As you can see, in this process you always have to go to the end of the game and
start from there, working your way up to the beginning. Let’snow do this in our
example. The last move in the game belongs toC . If he attacks, his payoff will
be�12, and if he does not attack, his payoff will be�10. Therefore, it is optimal
not to attack. We conclude that in any perfect equilibrium, the action specified by
C ’s strategy must include playing�a at his last information set. This is illustrated
in Figure 3, where thea action has been crossed out, and an arrow points to the
outcome following the�a (optimal) action.

1Some authors use the term “rollback” in place of backward induction because it is simpler. The
two are equivalent, but “rollback” has another meaning for national security and the use of force, so
we shall stick with the older term even if it is a bit unwieldy.
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Figure 3: The Game AfterC ’s Optimal Attack Decision.

We now go back toD’s decision at her information set. Playing� r yields a
payoff of �10. Playingr , on the other hand, leads toC ’s attack decision. We have
already seen that the only rational choice there is�a, which means that playingr
really leads to the outcome, whereD’s payoff is10. Therefore, given that playerC

cannot credibly commit to attacking, playerD’s optimal course of action is to resist
if challenged. Thus, in any perfect equilibrium, playerD’s strategy must specifyr
as the action at her information set. Figure 4 shows the resulting game tree, where
the �r action has been crossed out, and an arrow points towardC ’s information
set. Thus, ifD resists, the outcome is capitulation byC .
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Figure 4: The Game AfterD’ Optimal Resistance Decision.

We now move back up the tree toC ’s initial decision to escalate or not. If he does
not escalate (plays�e), then the outcome is the status quo with a payoff of 0. If
he escalates, on the other hand,D will get to choose her course of action. We have
already seen that the optimal choice is to resist, leading tothe second information
set forC , where he will inevitably back down. Thus, escalation is equivalent to
having to capitulate later on in the game, with a payoff of�10. Therefore,C would
choose�e at the beginning of the game, avoiding the crisis (and therefore the need
to capitulate when resisted) altogether.

Thus, in any perfect equilibrium, playerC ’s strategy must specify� e as the
action at the first information set. We can put all this together, as shown in Figure 5,
which also demonstrates the perfect equilibrium of the game.

We conclude that the perfect equilibrium ish.�e; �a/; ri. That is, playerC
chooses not to escalate at the first information set and not toattack at the second
information set, and playerD chooses to resist if challenged. The equilibrium
outcome is the status quo.
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Figure 5: The Perfect Equilibrium of the Game with a Weak Challenger.

Note how this differs from the PSNE: we have eliminated two ofthem. Consider
h.�e; a/; ri: the outcome here is also the status quo, and there’s also a threat by
D that causesC not to escalate. However, the defender’s threat is incredible if she
really thoughtC would attack. Furthermore,C ’s threat to attack itself is not cred-
ible if he is weak. Subgame-perfection eliminates this solution because it involves
incredible moves (by both players actually). Consider nowh.e; a/; �ri. As I noted
before, this equilibrium is only reasonable ifC has a credible threat to attack when
resisted, which is not the case when he is weak. In this case,D would not believe
such a threat and would not play� r . Again, subgame perfection picks out this
problem and prunes the PSNE. The only remaining PSNE is admissible because it
involves only credible threats by both players.

This solution illustrates a profoundly important point about the optimality of
strategies. It demonstrateswhy we need to consider the actions at all information
sets, including the ones not reached if the strategy is followed. In our case, player
C ’s strategy is.�e; �a/, and one may wonder why we need to worry about whatC

would do if D resists given that ifC plays this very same strategy,D would never
get to resist in the first place.

The answer should now be obvious from the backward induction: the only reason
it is optimal forC not to escalate is because he expectsD to respond by resisting,
in which caseC will be forced not to attack. That is, the optimality of the action
at the first information set depends indirectly on the optimality of the action at
the last information set through playerD’s optimal strategy. One action cannot
be considered without the other. That is precisely why we need for strategies to
list actions at all information sets. Otherwise, we would not be able to determine
whether they are optimal.

The other important insight here is that optimal behavior critically depends on
credibility of future actions. This is the topic which we shall begin investigating
in depth next week. For now, note that becauseD can compel her opponent to
capitulate, she candeter him from escalating in the first place. As we shall often
see, the success of deterrence will mostly rest on the credibility of the threat to resist
challenges; that is, on the defender’s ability to compelC to undo his action. We
shall cover these ideas in depth and at length when discussing Cold War history.
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4 Move Order Advantages

In the escalation game,C ’s problem is that he cannot credibly threaten to attack at
the last stage, which is why he cannot compelD to back down when challenged.
This is very similar to our original crisis game in thatD derives an advantage by
saddling her opponent with the last move in the game. Again, relinquishing the
initiative seems like a winning strategy because it leaves the opponent to make the
painful choice.

You may be tempted to generalize that it is always better to relinquish the choice
to your opponent, but this would be a false generality. To seewhy, let’s consider
the same escalation game, this time against a resolute challenger. Recall that this
challenger would rather fight than capitulate.

We begin withC ’s last move. Given resistance by defender, attacking yields �1

while not attacking yields�10. Therefore,C ’s optimal action is to attack. In the
perfect equilibrium,C ’s strategy must specifya for this information set. Given
that C will attack if resisted,D’s payoff from resisting is�15, while the payoff
from capitulating is�10. Therefore, playerD would prefer to capitulate. In other
words, in the perfect equilibrium,D’s strategy must be�r . Finally, we turn toC ’s
initial decision. Not escalating yields a payoff of 0 from the status quo. Escalation,
however, leads toD’s capitulation with a payoff of 10. Therefore,C would strictly
prefer to escalate. In other words, in the perfect equilibrium, C ’s strategy must
specifye as the optimal action at the first information set.
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�10; 10
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D a
�1; �15
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Figure 6: The Perfect Equilibrium of the Game with a Tough Challenger.

The perfect equilibrium,h.e; a/; �ri, is illustrated in Figure 6. Again, note the
importance of specifying the actions at all information sets. If C ’s strategy did
not include what to do when resisted, we would have no way of evaluating the
optimality of D’s strategy, and in turn, no way of telling whether escalation was
optimal at the outset of the game. The equilibrium outcome iscapitulation by the
defender.

Further, unlike the previous game,D cannot benefit from relinquishing the ini-
tiative to C . In this case, the result (war) is much worse forD than capitulation.
BecauseD cannot compelC to capitulate (since war is better forC than capitu-
lation), D is forced to capitulate herself (because for her war is worse). Because
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of this, D cannot deterC from escalating in the first place. Thus,the lack of a
credible compellent threat leads to failure of deterrence.

Observe now that this is the unique solution to this game: again we have elimi-
nated two PSNE. As before, one of them was the blatantly improbable oneh.�e; a/; ri

whereD’s behavior is inconsistent with her expectations about what would hap-
pen if she resists. The original solution fails to pick out this problem becauseD
is never called upon to execute the threat to resist: if the strategies are followed,
the game ends with the status quo. The other problem PSNE is the one that was
subgame-perfect when the challenger is weak:h.�e; �a/; ri. A toughC does have
a credible threat to attack when resisted, soD should not expect her to capitulate,
which meansD should not be able to deterC by threatening to resist. Again, the
original solution did not pick this out becauseD’s threat is never actually executed:
if the strategies are followed, the game ends with the statusquo.

This is actually the fundamental issue: Nash equilibrium does not detect incred-
ible moves when they occur off the path of play (at information sets that are never
reached if players follow their strategies). If all information sets are reached with
positive probability, then Nash equilibrium will work justfine and all Nash equilib-
ria will also be subgame-perfect. However, as we have seen what is not supposed
to happen can have profound influence of what does happen, as Sherlock Holmes
knew quite well when he talked about the dog that did not bark in the night.

Now we have a unique reasonable solution for each of the two possible scenarios
we have considered. If the challenger is weak, he has no credible threat to go to war
if resisted, which means that even a weak defender can take advantage of that and
threaten credibly to resist any escalation. This, in turn, detersC from challenging
the status quo in the first place. Peace prevails and the status quo persists. When
the challenger is tough, he does have a credible threat to go to war if resisted, which
causesD (who is weak) to capitulate if challenged. This causes deterrence failure.
However, peace still prevails even though the status quo is revised in challenger’s
favor. In either case, war never occurs in equilibrium when the defender knows
whether the challenger’s threat to fight is credible or not.

And therein lies the problem, for in most real-life situations, the defender cannot
be certain whether the challenger is going to fight or not. Thefact that the perfect
equilibrium takes a different form depending on that knowledge is both intuitive
and worrisome: we need to analyze the situation while takingD’s uncertainty into
account. As we shall see, this will dramatically alter our conclusions.

5 Coming Up. . .

The two examples with the basic escalation game show that depending on what we
assume about the challenger, the optimal strategies and theequilibrium outcomes
will be different. This is useful in itself for thinking about credible commitments,

13



but does not tell us a whole lot about real crises, in which thedefender is likely not
to know whether the challenger is resolute or not. Next time we shall put these two
games together and analyze the resulting game of incompleteinformation.

For now, chew on this: in both escalation games, the equilibrium outcomes (sta-
tus quo with irresolute challenger and capitulation by defender with resolute chal-
lenger) involve zero chance of war. From what we’ve seen already, is this reason-
able for models of crisis?
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