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Overview We have now seen how to solve games of complete informatenigqt
and imperfect) by finding the best responses of the playetshtem identifying the
strategy profiles that contain only strategies that are f@sgtonses to each other.
We now investigate best responses in games where playess sequentially. We
develop the concept of credible threats and promises, wikithe fundamental
building block of our theories of the use of force. We incagie the idea of cred-
ible moves in our refined solution concept of perfect eqiilim and learn how to
find it by backward induction.




Recall that last time we solved the Crisis Game with imperfefdrmation and
found three equilibria, two in pure strategies and one ineaigtrategies. | argued
that the mixed-strategy equilibrium can provide us with ewous insights about
general crisis situations: the element of danger that maigiresent, and how that
relates to the probabilities of a crisis eruption in the fplsice and a crisis ending
in disaster once begun.

A critical feature of the general crisis model was the infation available to
the players when they made their decisions. We assumedeéhhénobserves the
other's move when choosing the optimal strategy. That isagsaimed a game of
imperfect information. We now turn to a variant of the gaméwperfect informa-
tion: one of the players will observe the first move of its opgat before deciding
what to do.

The optimal solution to this crisis game will allow us to defprecisely what we
mean by credible threats and promises. The ideas of criggéuild commitment are
the fundamental building blocks in the theories of the us®afe, and so we must
ensure that we understand them thoroughly. The goal is t@ ssgies of simple
models to illustrate each concept, and then investigatsilplescounter-moves for
players who will try to cope with threats. This will give us @id background for
the historical analysis of deterrence and compellenceeswiere used in practice
throughout the Cold War and after.

1 Nash Equilibrium With Perfect | nfor mation

1.1 TheCrissGame

Let us now consider the variant of the crisis game under penfdormation, as

shown in Figure 1. In this game, player 1 makes the first movd,@ayer 2 ob-

serves it before choosing her response. Perhaps surpyjsimg analysis may ap-
pear a bit more involved. However, after we do the best-respexercise, we shall
learn of a very simple method for solving these games! Wd sbale the game

for pure strategy equilibria because this is sufficient tmdestrate the difference
between analyzing the perfect and imperfect informatianem

-5,-5 1,-1 -1,1 0,0
Figure 1: Crisis Game With Perfect Information.

Player 1 has two pure strategies, = {E,~ E}, and player 2 has four pure
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strategies:S, = {(e,e), (e, ~e), (~e,e), (~e,~e)}. We shall use, to denote an
arbitrary pure strategy for player 1. Similarly, we shaksisto denote an arbitrary
pure strategy for player 2. For exampie,= (e, ~¢) would be one such strategy.
Let’s find the best responses for both players.

We begin with player 1. What are the best response stratdgaesie has? To
find the set of best response strategies, we have to analysteatdgies of player 2.
We begin with(e, ¢): that is, player 2 would escalate regardless of whethereplay
1 does. What is the best responséedr)? If player 1 chooses the stratefjy then
the outcome will be disaster, and his payoff will b8. If, on the other hand, player
1 chooses-E, the outcome will be victory for player 2, and the payoff féayer 1
will be —1. Because-1 > —5, player 1 prefers to chooseE. That is, the strategy
~E is a best response to player 2’s stratégye).

What is the best response(ia ~¢)? PlayingE produces disaster, with a payoff
of —5, while playing~E produces the status quo with a payofofSince0 > —5,
the best response (again) is to pfay .

What is the best response e e, e¢)? PlayingE produces victory by player 1,
with a payoff of1. Playing~E produces victory by the opponent, with a payoff of
—1. Thus, the best response her&ivecause it gets > —1.

Finally, what is the best response(toe, ~¢)? PlayingE produces victory by
player 1 with a payoff ofi. Playing~ E produces the status quo outcome, with a
payoff of 0. Becausd > 0, the best response to this strategy is to play

Hence, the best responses by player 1 are:

E if s €{(~e,e), (~e,~e)}, and
~E if s, €{(e,e),(e,~e)}.

Let's now look at the best responses for player 2. Again, we ha consider all
possible strategies for player 1. What is the best respong&?toConsider the
information set following this action by player 1. If play@rchooses at this
information set, the outcome is disaster, with a payoff-6f If she chooses-e,
the outcome is capitulation by herself, with a payoff-of. Since—1 > —5, she
prefers to play-e.

Is then~e a best response 19 = E? No! The reason is thate is not a strategy
for player 2! Recall that player 2’s strategies have two conemds each. What
we conclude from this is that the best response strategylégep2 must involve
playing ~e at the first information set. There ango such strategieg~e, ~¢) and
(~e, e), and either one of these will work. Thus, we see that it isegpdssible to
have more than one best response to a particular strategy.

What about the best responset@&? At this information set, choosing pro-
duces victory by player 2, with a payoff af Choosing~e, on the other hand,
produces the status quo with a payofflofSincel > 0, player 2’s best response
must involve choosing at this information set. There are two strategies that do
this: (e, e) and(~e, e).

BR(s2) =



Hence, the best responses by player 2 are:

BR,(s)) = (e,e) or (~e,e) ?f s1 =~FE, and
(~e,~e) Or(~e,e) if s;=E.

We immediately see something very interesting about plagdrest response. The

strategy(e, ~¢) is not a best response to anything player 1 might possiblyimo.

other words, there is no action by player 1 that player 2 coplimally respond

to with this strategy. This means that we should expect playe never play this

strategy in this game.

Let us now examine the strategy profiles. For example, onsilpesstrategy
profile in this game i E, (e, ~¢)). In this strategy profile, player 1's strategyAs
and player 2’s strategy ig, ~e¢).

Consider first strateg¥ . From BR.(E), we know that it has the best responses
(~e,e) and(~e, ~¢e). To which of these two, if any, i& itself a best response?
Looking at BR (~e, ¢), we see thaF is a best response. So, one Nash equilibrium
is(E, (~e,e)).

Is E a best response to-e,~e¢)? Sure it is, and sQE, (~e, ~¢)) is another
Nash equilibrium. The equilibrium outcome is again capitiain by player 2.

Comparing the two solutions, we see that they have one thirmpimmon: if
player 1 expects player 2 to submit following escalatioentplayer 1 will always
escalate because this gives him the best possible outcoitiretfde highest pay-
off). Conversely, if player 2 expects player 1 to escalaten tshe prefers to submit
because doing so, although resulting in capitulation, iisketter than escalating
in turn and ending in disaster. In both of these cases, thiilrgum outcome is
victory by player 1. Remember this point, we shall return to it

Continuing with our examination of profiles, consider newkE. We know that
BR,(~ E) is either(e,e) or (~e,e). To which of these is- E itself a best re-
sponse? We have already seen that the best respofise, i) is E, so the profile
(~E, (~e,e)) cannot be Nash equilibrium because player 1's strategytia best
response to player 2’s strategy. However, BRe) is ~ E, and so the profile
(~E, (e,e)) is yet another Nash equilibrium. The see the outcome pratibge
this strategy profile, note that in it player 1 submits, araypl 2 escalates. The
equilibrium outcome is victory by player 2.

In this equilibrium, player 1 expects that player 2 is goiagescalate no matter
what. Given such a strategy, player 1's optimal course adads$ to submit because
even though this would result in capitulation, it would al/thie worst outcome of
disaster. Given that player 1 is expected to submit, plajgestbategy of escalating
is also optimal.

Thus, the game of perfect information has three Nash egailibE, (~e, ¢)),
(E, (~e,~e)),and(~E, (e, e)). Let's think now carefully about what these profiles
mean.



1.2 Incredible Threatsin Equilibrium?

Consider the profilé~E, (e, e)). Player 1 chooses E because if he chooséds,
player 2 is going to play, and the outcome will be disaster. That is, not escalating
is optimal because of player 2breat to escalate if player 1 escalates. However, is
this threaftcredible?

Itis not. Think about what would happen if player 1 deviatad actually played
E instead. Faced now with escalation, player 2 will preferlayp-e and avoid
disaster. The threat to escalate in response to player dddati®n is not credible.
This means that a rational player 1 should not believe it. theowords, player
2's strategy(e, ¢) cannot be optimalf player 1 actually escalates. Player 1 should
believe that player 2 would respond to escalation with ssbimn. But given that
player 2 would capitulate following escalation, then plagecan do better than
submitting: he can actually escalate. Thus, the originaltegy~ £ cannot be
optimal in turn! In other wordshecause player 2 observes player 1's move before
making her choice, player 2 cannot possibly threaten to escalate in response to
escalation.

What just happened here? What happened is the shortcomingsbf edguilib-
rium, which does not consider optimality during the gamdy ahthe beginning of
the game. The profilé~E, (e, e)) is a Nash equilibrium because it is optimal at
the beginning of the game. If player 1 thinks that player 2 qlay (e, ¢), then
it is optimal to play~E. And since player 1 does not escalate, player 2's threat to
escalate if player 1 does is never tested. Because playere? gets to respond to
escalation, playing there is optimal. But, of course, player 1 knows all this. He
also knows thatf he actually escalates, player 2 will back down for sure. ©nfo
tunately, Nash equilibrium does not allow us to examinedhesds of conditional
statements.

In fact, (~E, (e, e)) is not the only suspicious solution to the game. Consider
(E, (~e,~e)). We already know that when player 1 escalates,is the optimal
response for player 2. Suppose now that player 1 does ndagsda~e an optimal
response there? It is not because it yields a payoff of 0 assggpto a payoff of 1,
which player 2 could get by escalating instead. Thuspttuenise not to escalate if
player 1 does not escalate is not credible either! Adagoause player 2 observes
player 1's move before making her choice, player 2 cannot possibly promise not to
escalate in response to no escalation.

In other words, player 2 can neither threaten to punish asoalby escalating,
nor can she promise to reward restraint by not escalatirayePl cannotredibly
commit to these courses of action. Our original solution conceptiasgh equilib-
rium does not take into account the sequence of moves, amd $$rong enough to
rule out as unreasonable strategy profiles that includeisgobdible threats. What
we really want is a stronger solution concept that would prtirese profiles. In-
cidentally, this also demonstrates why we needed to incilideformation sets in



the specification of a strategy: it allows us to identify pgesfiin which optimality
may depend on unreasonable play at some information set.

1.3 TheEscalation Game

Recall our complete information escalation game betweenakwefender and a
weak (irresolute) challenger, as shown in Figure 2(a), twben a weak defender
and a tough (resolute) challenger, as shown in Figure 2(b).

C e D r C a C e D r C a
—-12,-12 —-1,-15
~e ~r ~da ~e ~r ~a
0,0 10,—10 —10,10 0,0 10,—10 —10,10
(a) Weak Challenger (b) Tough Challenger

Figure 2: Sequential Escalation Games with a Weak Defender.

Let’s find the pure-strategy Nash equilibria for these twmga. We can derive
the best responses but instead we shall take a short-cotpdifyiour task. Observe
the following (these hold for both games):

1. If the defender playsr in some equilibrium, ther-e cannot be a part of any
best-response by the challenger. If the defender is sulpitutate, then any
strategy involving escalation by the challenger would ¢/ieim a payoff of
10 whereas any strategy involvinge yields a payoff of0, which is strictly
worse. Therefore, we conclude that = ¢ in any equilibrium.

2. If the defender plays is some equilibrium, thea cannot be a part of any
best-response by the challenger. If the defender is sureststy then esca-
lation will lead either to war (with payoffs-1 if the challenger is tough and
—12 if he is weak) or capitulation (with a payoff 6f10). In all cases, the
payoff is negative whereas any strategy witla yields 0, which is strictly
better. Therefore, we conclude that>~e in any equilibrium.

3. If the challenger plays-a in some equilibrium, thea-r cannot be a best-
response by the defender. If the challenger is sure to dafgtwhen resisted,
then the defender will get eithéd (the payoff from the challenger’s capitu-
lation if he also escalates) 01(the payoff from the status quo if he does not).
If the challenger plays, resisting is strictly better than capitulating, which
would yield—10. If the challenger plays-e, then the defender is indifferent
because she would gétwhether she resists or not. However, notice that by
(1), we know that-r = e in any equilibrium, which implies that if she chose



~r predicated on her indifference givere, then the challenger would not
actually pick~e. Therefore, we conclude thatz = r in any equilibrium.

These three implications are sufficient to give us the smhstto the games. Ob-
serve that from (3) and (2) we obtatha = r =~e. In other words, in any
equilibrium in which the challenger playsa, the defender will play:, which in
turn means that the challenger must be playing Therefore, we have our first
PSNE:((~e, ~a), ).

All the remaining solutions must involve the challengerypig a at his second
information set. There are only two possibilitiee, a) and(~e, a). If he plays
(e,a), then the defender cannot be playinbgecause by (2) if she did so, the chal-
lenger’s best response must involve. Therefore, she must be playirg, and by
(1) this means the challenger is playiag Therefore, we have our second PSNE:
((e,a),~r).

Finally, if the challenger playé~e, a), then the defender cannot be playirg
because if she did, (1) tells us that the challenger’s eEsgianse would have to
involve e. Therefore, she must be playingand by (2) this means the challenger is
playing~e. Therefore, we have our third, and final, PSN&se, a), r).

Notice now two disturbing things about these solutionssti-the PSNE are the
same for both games. It appears that it does not matter whitthehallenger is
weak or tough, Nash equilibrium leads to the same predistfon rational play.
This is a bit odd since we know that a weak challenger wouldtalzpe if resisted
but the tough one will not. Intuitively, we would expect thismatter for the solu-
tion but at least in PSNE here it does not.

Second, some of the solutions appear suspect. For examgie,PSNE(~e, a), r),
the challenger is successfully deterred from escalatinthbydefender’s threat to
resist. However, this threat cannot be credible if the dédemeally believes that
the challenger would attack when resisted, as specifieddgtrategy. Hence, the
defender is relying on an incredible threat: if attack isesarfollow her resistance,
then she would capitulate instead, and, knowing this, tlaflexger would escalate.

The other two PSNE are also suspect depending on whetheh#llermer is
tough or not. For example, if(e,a), ~r), he obtains the defender’s capitulation
by threatening to attack if resisted. However, the weaklehger would never do
so, which means that when the defender knows that he is wieakyifi not believe
such a threat. But if she does not believe the threat, then shilwertainly resist,
in which case the challenger would not escalate in the fimtgl Analogously,
in ((~e,~a), r), the challenger is deterred by the defender’s threat tstrte$his
threat is credible because the challenger is expected ftulzp for sure when
resisted. However, we know that the tough challenger woselendo that, which
means that if the defender knows that he is tough, she woutdicly capitulate.
But if she does that, then the tough challenger will escatettead.

Again, PSNE have undesirable properties, and they all omgée solution fail-



ing to pick out the problem that the strategies involve axdtithat players would not
want to carry out when the contingency arises. We need aggraolution concept
that takes care of this problem.

2 Perfect Equilibrium

The revision of Nash equilibrium that can handle crediblegotments properly is
due to Reinchard Selten (co-winner with Nash of the Nobeldyand is technically
known assubgame perfect equilibrium. Intuitively, it requires that the strategies
are not only best responses to each other considered iretht@iety, but also best
responses to each other at any point in the game. That istrdteges form a
Nash equilibrium in every subgame. siibgame is any part of the game tree that
(a) begins with a singleton information set, (b) includdsabsequent parts of the
game tree, and (c) never splits information sets. Insteaefifing subgames more
precisely and messing with technicalities, let’s just khatbout what this means in
our example.

Consider player 2's decision following the action by playeiniFigure 1. If
player 1 has escalated, the subgame consists simply ofr@&yehoice. In this
subgame there is only one player, so the optimal solutiosistsof this player’s
action. Because escalation yieldS and no escalation yieldsl, player 2's optimal
response is to play-e; that is, ~ e is the Nash equilibrium in this trivial game
without an opponent.

Consider player 2's decision following non-escalation beyel 1. In this sub-
game (again) there is only one player, and so Nash equitibisLgoing to consists
of its best action. Because escalation yields 1 and no eggaldelds 0, player
2's best action ig; that ise is the Nash equilibrium in this trivial game without an
opponent.

Thus, the perfection requirement that the strategies foashNequilibria at all
points in the game demands that player 2’s strate@yése) because these actions
are the only possible best responses at the correspondiangation sets.

What is then player 1's best response given that player 2 Vaiyt p~e, e)? We
know that BR (~e¢,e) = E. And we further know that among the best responses
to £ we have BR(E) = (~e,e). Therefore,(E, (~e,e)) is an equilibrium. Of
course, we already knew that from our original analysis. Ppbmt is that it is
the only perfect equilibrium of the crisis game. In other words, it is the only
equilibrium in which all players’ threats and promises aredible. All perfect
equilibria are necessarily Nash equilibria but the corevéas we have just seen) is
not true: there are many Nash equilibria that are not perfect

By applying the perfection criterion, we have eliminated tineeasonable solu-
tions(~E, (e,e)) and(E, (~e, ~¢)). That is, we should not expect rational players
to ever play these strategies. We have concluded(#iat~e, ¢)) is the only rea-



sonable expectation we should have about the way the ganoeng @ be played.

This immediately demonstrates the importancetoditegic moves: player 1 can
guarantee its most preferred outcomecbynpelling player 2 to back down. Con-
versely, player 2 cannateter player 1 from escalating because it cannot credibly
escalate in return. If player 1 commits to escalation, pl@&/&as no choice but
back down. Interestingly, player 1's position here is emeahby leaving the ulti-
mate choice to its opponent! We shall have more to say ab@iegtc moves later.
Let’s first learn a simple method for solving complete infatian games.

3 Backward Induction

If you have a game of perfect information, then you don’t hvgo through the
best-response exercise to find the perfect equilibria. &'tse much easier method
calledbackward induction, which is really a way to look forward and reason back-
ward! That is, to determine what you should do today, you need tio dothe con-
sequences your various actions will have tomorrow, and pienthe one with the
best consequences. More to the point, it involves lookinmg/dod to determine if
your opponent will carry out the action he is threateningipising to and deciding
whether the threat/promise is credible. The easiest wagdenstand the process is
through an example.

Consider the sequential escalation game with the weak cigalien Figure 2(a).
Determining the credibility of an action boils down the detaing whether the
player would actually want to choose it if given a chance. &mmple, would
player D prefer to resist ifC actually escalated. Obviously, the answer would de-
pend on whethe€ would prefer to attack iD actually resists. Thus, to determine
the credibility of the promise to resist by, we have to evaluate the credibility of
C’s threat to attack. This is why the process is called “logkiorward.” It is also
called “reasoning backward” because once we've deterntiredredibility ofC’s
threat to attack, we can go back and figure out the creditfityp’s promise to
resist, and so on.

As you can see, in this process you always have to go to thefehd game and
start from there, working your way up to the beginning. Leitsv do this in our
example. The last move in the game belong€'tolf he attacks, his payoff will
be —12, and if he does not attack, his payoff will bel0. Therefore, it is optimal
not to attack. We conclude that in any perfect equilibriune &ction specified by
C'’s strategy must include playinga at his last information set. This is illustrated
in Figure 3, where the action has been crossed out, and an arrow points to the
outcome following the-a (optimal) action.

1Some authors use the term “rollback” in place of backwarddtion because it is simpler. The
two are equivalent, but “rollback” has another meaning ftfanal security and the use of force, so
we shall stick with the older term even if it is a bit unwieldy.



1 —12,-12

0,0 10,—10  —10,10
Figure 3: The Game Aftef’s Optimal Attack Decision.

We now go back taD’s decision at her information set. Playingr yields a
payoff of —10. Playingr, on the other hand, leads s attack decision. We have
already seen that the only rational choice thereds which means that playing
really leads to the outcome, whebes payoff is10. Therefore, given that play&r
cannot credibly commit to attacking, playPrs optimal course of action is to resist
if challenged. Thus, in any perfect equilibrium, play®is strategy must specify
as the action at her information set. Figure 4 shows thetiegudame tree, where
the ~r action has been crossed out, and an arrow points to@&dnformation
set. Thus, ifD resists, the outcome is capitulation 6y

C e D r C a

—12,-12

~e ~r ~d

0,0 10,—10 -10,10
Figure 4: The Game AfteD’ Optimal Resistance Decision.

We now move back up the tree€0s initial decision to escalate or not. If he does
not escalate (plays-e), then the outcome is the status quo with a payoff of 0. If
he escalates, on the other hamdwill get to choose her course of action. We have
already seen that the optimal choice is to resist, leadingesecond information
set forC, where he will inevitably back down. Thus, escalation isiegjent to
having to capitulate later on in the game, with a payoffaf). ThereforeC would
choose~e at the beginning of the game, avoiding the crisis (and tleeghe need
to capitulate when resisted) altogether.

Thus, in any perfect equilibrium, play€r’s strategy must specify- e as the
action at the first information set. We can put all this togetas shown in Figure 5,
which also demonstrates the perfect equilibrium of the game

We conclude that the perfect equilibrium (6~e, ~a),r). That is, playerC
chooses not to escalate at the first information set and naittack at the second
information set, and playeP chooses to resist if challenged. The equilibrium
outcome is the status quo.
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¢ e, D r C q

—12,-12

0,0 10,—10  —10,10
Figure 5: The Perfect Equilibrium of the Game with a Weak Girajker.

Note how this differs from the PSNE: we have eliminated twtheim. Consider
((~e,a),r): the outcome here is also the status quo, and there’s alseat thy
D that cause€’ not to escalate. However, the defender’s threat is incledilshe
really thoughtC would attack. Furthermoré;’s threat to attack itself is not cred-
ible if he is weak. Subgame-perfection eliminates this timtubecause it involves
incredible moves (by both players actually). Consider i@wa), ~r). As | noted
before, this equilibrium is only reasonablelifhas a credible threat to attack when
resisted, which is not the case when he is weak. In this daseould not believe
such a threat and would not playr. Again, subgame perfection picks out this
problem and prunes the PSNE. The only remaining PSNE is athtedecause it
involves only credible threats by both players.

This solution illustrates a profoundly important point abdhe optimality of
strategies. It demonstratedy we need to consider the actions at all information
sets, including the ones not reached if the strategy is followed. In our case, player
C’s strategy ig~e, ~a), and one may wonder why we need to worry about what
would do if D resists given that i€ plays this very same strategh, would never
get to resist in the first place.

The answer should now be obvious from the backward inducti@only reason
it is optimal for C not to escalate is because he expdzt® respond by resisting,
in which caseC will be forced not to attack. That is, the optimality of thetian
at the first information set depends indirectly on the oplityaf the action at
the last information set through play@r's optimal strategy. One action cannot
be considered without the other. That is precisely why wealrfee strategies to
list actions at all information sets. Otherwise, we would be able to determine
whether they are optimal.

The other important insight here is that optimal behaviaioaily depends on
credibility of future actions. This is the topic which we #Haegin investigating
in depth next week. For now, note that becaudse&an compel her opponent to
capitulate, she cadeter him from escalating in the first place. As we shall often
see, the success of deterrence will mostly rest on the dligddd the threat to resist
challenges; that is, on the defender’s ability to com@etio undo his action. We
shall cover these ideas in depth and at length when disqu€sitd War history.
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4 Move Order Advantages

In the escalation gamé€;’s problem is that he cannot credibly threaten to attack at
the last stage, which is why he cannot competo back down when challenged.
This is very similar to our original crisis game in thBt derives an advantage by
saddling her opponent with the last move in the game. Aga&imquishing the
initiative seems like a winning strategy because it leakiesopponent to make the
painful choice.

You may be tempted to generalize that it is always betterltocqeish the choice
to your opponent, but this would be a false generality. Tovgley let's consider
the same escalation game, this time against a resoluteengall Recall that this
challenger would rather fight than capitulate.

We begin withC'’s last move. Given resistance by defender, attacking gield
while not attacking yields-10. Therefore,C’s optimal action is to attack. In the
perfect equilibrium,C’s strategy must specify for this information set. Given
that C will attack if resisted,D’s payoff from resisting is-15, while the payoff
from capitulating is—10. Therefore, playeD would prefer to capitulate. In other
words, in the perfect equilibrium)’s strategy must be-r. Finally, we turn toC’s
initial decision. Not escalating yields a payoff of O fronetbtatus quo. Escalation,
however, leads t®'’s capitulation with a payoff of 10. Therefor€, would strictly
prefer to escalate. In other words, in the perfect equiitriC’s strategy must
specifye as the optimal action at the first information set.

C e D r C a

> —1,—15

~e ~r ~a

0,0 10,-10 -—10,10
Figure 6: The Perfect Equilibrium of the Game with a Tough Gmajer.

The perfect equilibrium{(e, a), ~r), is illustrated in Figure 6. Again, note the
importance of specifying the actions at all informationsself C’s strategy did
not include what to do when resisted, we would have no way afuating the
optimality of D’s strategy, and in turn, no way of telling whether escatatieas
optimal at the outset of the game. The equilibrium outconwagstulation by the
defender.

Further, unlike the previous gams®, cannot benefit from relinquishing the ini-
tiative to C. In this case, the result (war) is much worse forthan capitulation.
BecauseD cannot compelC to capitulate (since war is better far than capitu-
lation), D is forced to capitulate herself (because for her war is worBecause
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of this, D cannot detelC from escalating in the first place. Thuse lack of a
credible compellent threat leadsto failure of deterrence.

Observe now that this is the unique solution to this gameinaga have elimi-
nated two PSNE. As before, one of them was the blatantly ibadste ond(~e, a), r)
where D’s behavior is inconsistent with her expectations abouttwiauld hap-
pen if she resists. The original solution fails to pick oustproblem becaus®
is never called upon to execute the threat to resist: if theesjies are followed,
the game ends with the status quo. The other problem PSNIe isrt@ that was
subgame-perfect when the challenger is weéke, ~a), r). A toughC does have
a credible threat to attack when resisted /sshould not expect her to capitulate,
which meansD should not be able to detér by threatening to resist. Again, the
original solution did not pick this out becauges threat is never actually executed:
if the strategies are followed, the game ends with the staios

This is actually the fundamental issue: Nash equilibriuradoot detect incred-
ible moves when they occur off the path of play (at informatsets that are never
reached if players follow their strategies). If all infortizen sets are reached with
positive probability, then Nash equilibrium will work jushe and all Nash equilib-
ria will also be subgame-perfect. However, as we have seen iwmot supposed
to happen can have profound influence of what does happemesto& Holmes
knew quite well when he talked about the dog that did not batkeé night.

Now we have a unigue reasonable solution for each of the twsiple scenarios
we have considered. If the challenger is weak, he has naxtedtireat to go to war
if resisted, which means that even a weak defender can takatde of that and
threaten credibly to resist any escalation. This, in tugtesC from challenging
the status quo in the first place. Peace prevails and thesqjatu persists. When
the challenger is tough, he does have a credible threat \gartif resisted, which
causes) (who is weak) to capitulate if challenged. This causes detee failure.
However, peace still prevails even though the status quevised in challenger’s
favor. In either case, war never occurs in equilibrium whes defender knows
whether the challenger’s threat to fight is credible or not.

And therein lies the problem, for in most real-life situao the defender cannot
be certain whether the challenger is going to fight or not. fEleethat the perfect
equilibrium takes a different form depending on that knalgle is both intuitive
and worrisome: we need to analyze the situation while takigyuncertainty into
account. As we shall see, this will dramatically alter oundasions.

5 ComingUp...

The two examples with the basic escalation game show thatdigpg on what we
assume about the challenger, the optimal strategies anefjthigbrium outcomes
will be different. This is useful in itself for thinking abbaredible commitments,
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but does not tell us a whole lot about real crises, in whichdigfender is likely not
to know whether the challenger is resolute or not. Next tireeshall put these two
games together and analyze the resulting game of incompfetenation.

For now, chew on this: in both escalation games, the equilboutcomes (sta-
tus quo with irresolute challenger and capitulation by ddér with resolute chal-
lenger) involve zero chance of war. From what we've seeradlgis this reason-
able for models of crisis?
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