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A common observation in the informal literature of economics (and elsewhere) is 
that in multistage “games,” players may seek early in the game to acquire a 
reputation for being “tough” or “benevolent” or something else. But this 
phenomenon is not observed in some formal game-theoretic analyses of finite 
games, such as Selten’s finitely repeated chain-store game or in the finitely repeated 
prisoners’ dilemma. We reexamine Selten’s model, adding to it a “small” amount of 
imperfect (or incomplete) information about players’ payoffs, and we find that this 
addition is sufficient to give rise to the “reputation effect” that one intuitively 
expects. Journal of Economic Literature, Classification Numbers: 026. 2 13, 6 11. 

1. INTRODUCTION 

The purpose of this paper is to present some game-theoretic models that 
illustrate the role of a firm’s reputation. Allusions to reputational effects 
recur in the industrial organization literature on imperfect competition, but 
formal models and analyses have been lacking. Scherer [ 211, for example, 
points to 

the demonstration effect that sharp price cutting in one market can have on the 
behavior of actual or would-be rivals in other markets. If  rivals come to fear from a 
multimarket seller’s actions in Market A that entry or expansion in Markets B and 
C will be met by sharp price cuts or other rapacious responses, they may be 
deterred from taking agressive actions there. Then the conglomerate’s expected 
benefit from predation in Market A will be supplemented by the discounted present 
value of the competition-inhibiting effects its example has in Markets B and C. 

(page 338) 

The intuitive appeal of this line of reasoning has, however, been called the 
“chain-store paradox” by Selten [24], who demonstrates that it is not 
supported in a straightforward game-theoretic model. We shall elaborate 
Selten’s argument later, but the crux is that, in a very simple environment, 
there is no means by which thoroughly rational strategies in one market 
could be influenced by behavior in a second, essentially independent market. 
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What is lacking, apparently, is a plausible mechanism that connects behavior 
in otherwise independent markets. 

We show that imperfect information is one such mechanism. Moreover, 
the effects of imperfect information can be quite dramatic. If rivals perceive 
the slightest chance that an incumbent firm might enjoy “rapacious 
responses,” then the incumbent’s optimal strategy is to employ such behavior 
against its rivals in all, except possibly the last few, in a long string of 
encounters. For the incumbent, the immediate cost of predation is a 
worthwhile investment to sustain or enhance its reputation, thereby deterring 
subsequent challenges. 

The two models we present here are variants of the game studied by Selten 
[24]; several other variations are discussed in Kreps and Wilson 181. The 
first model can be interpreted in the context envisioned by Scherer: A 
multimarket monopolist faces a succession of potential entrants (though in 
our model the analysis is unchanged if there is a single rival with repeated 
opportunities to enter). We treat this as a finitely repeated game with the 
added feature that the entrants are unsure about the monopolist’s payoffs, 
and we show that there is a unique “sensible” equilibrium where, no matter 
how small the chance that the monopolist actually benefits from predation, 
the entrants nearly always avoid challenging the monopolist for fear of the 
predatory response. The second model enriches this formulation by allowing, 
in the case of a single entrant with multiple entry opportunities, that also the 
incumbent is uncertain about the entrant’s payoffs. The equilibrium in this 
model is analogous to a price war: Since the entrant also has a reputation to 
protect, both firms may engage in battle. Each employs its aggressive tactic 
in a classic game of “chicken,” persisting in its attempt to force the other to 
acquiesce before it would itself give up the fight, even if it is virtually certain 
(at the outset) that each side will thereby incur short-run losses. 

After reviewing Selten’s model in Section 2, we analyze these two models 
in Sections 3 and 4, respectively. In Section 5 we discuss our results and 
relate them to some of the relevant literature. In particular, this issue of the 
Journal includes a companion article by Milgrom and Roberts ] 131 that 
explores many of the issues studied here in models that are richer in 
institutional detail. Their paper is highly recommended to the reader. 

2. THE CHAIN-STORE PARADOX 

The models we analyze are variations on the chain-store game studied by 
Selten [24]. Consider a sequential game with two players called the entrant 
(or potential entrant) and the monopolist. The entrant moves first, electing 
either to enter or to stay out. Following entry, the monopolist chooses either 
to acquiesce or to fight. If the entrant stays out, the incumbent is not called 
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PAYOFFS 

ENTRANT’S MONOPOLIST’S 

ENTRANT STAYS OUT 
0 II 

MONOPOLIST ACQUIESCES b 0 

MONOPOLIST FIGHTS b -1 -1 

FIG. 1. S&en’s chain-store game. 

upon to move. Payoffs to the players, depending on the moves selected, are 
given in Fig. 1. We consider the case that a > 1 and 0 < b < 1. 

How will this game be played? If the entrant enters, the monopolist 
chooses between the payoffs 0 if it acquiesces and -1 if it fights, so surely it 
will acquiesce. Anticipating this response, the entrant chooses between 0 if it 
stays out and b if it enters, and so it will enter. This is one Nash equilibrium 
of the game, but there is another: If the entrant were to anticipate that the 
monopolist would fight entry, then the entrant would want to stay out. Note 
that it costs the monopolist nothing to adopt the strategy “fight if entry” if 
no entry occurs. So this is a second Nash equilibrium. But this second 
equilibrium is not so plausible as the first. It depends on an expectation by 
the entrant of the monopolist’s behavior that, faced with thefuit accompli of 
entry, would be irrational behavior for the monopolist. In the parlance of 
game theory, the second equilibrium is imperfect. We suppose that the 
entrant adopts the “rational expectation” that the monopolist will acquiesce 
to entry, and we expect the first equilibrium to ensue. 

Consider next the case that the game in Fig. 1 is played a finite number of 
times. A single monopolist plays a succession of N different entrants, where 
the monopolist’s total payoff is the sum of its payoffs in the N stage games. 
Allow the later entrants to observe the moves in all earlier stages of the 
game. Scherer’s reasoning predicts that in this case the “reputation” effect 
might come to life: The monopolist, by fighting any early entry, might 
convince later opponents that it will fight, thus deterring later entries. Indeed, 
if this were the case, then also the early round opponents would not enter, 
not wishing to be abused for demonstration purposes. However, as Selten 
argues, this does not withstand scrutiny. In the last stage the monopolist will 
not fight because there are no later entrants to demonstrate for. So in the last 
stage, entry will surely occur. But then in the penultimate stage, the 
monopolist again has no reason to fight-it is costly in the short run and has 
no effect on the last stage. The next-to-last entrant, realizing this, will surely 
enter. This logic can be repeated, unraveling from the back: In each stage 
entry and acquiescence will occur. To be precise, this is the unique perfect 
Nash equilibrium of the game; cf. Selten [22, 23, 241. Apparently, this model 
is inadequate to justify Scherer’s prediction that reputational effects will play 
a role. 
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3. ONE-SIDED UNCERTAINTY 

Our contention is that this inadequacy arises because the model does not 
capture a salient feature of realistic situations. (This contention was made 
first by Rosenthal [ 171, whose work we shall discuss in Section 5.) In prac- 
tical situations, the entrants cannot be certain about the payoffs to the 
monopolist. They may be unsure about the monopolist’s costs, or they may 
be uncertain about nonpecuniary benefits that the monopolist reaps-this 
may be a monopolist who enjoys being tough. The latter might be more 
colorfully stated by saying that the monopolist plays tough “irrationally”; 
according to Scherer [21, p. 247 1, “... fear of irrational or avowedly 
rapacious action, then, rather than the expectation of rational pricing 
responses, may be what deters the potential new entrant from entering on a 
large scale.” For whatever reason, the entrants may initially assess some 
positive probability p that the monopolist’s payoffs are not as in Fig. 1 but 
rather (in the simplest case) as in Fig. 2, reflecting a short-term benefit from 
a fighting response. In this case, later entrants, observing earlier moves, will 
revise their assessment p on the basis of what they see. Perhaps in this case 
the reputation effect will come alive. 

We model this formally as follows. There are N + 1 players, for N a 
positive integer. One of the players is the monopolist; the others are called 
entrant N, entrant N - l,..., entrant 1. The monopolist plays the game in 
Fig. 1 against each entrant in turn: First it plays against entrant N, then 
N - 1, etc. (We always index time backwards, and we refer to stage n as that 
part of the game that involves entrant n.) The payoffs for each entrant are 
given in Fig. 1. 

The monopolist’s payoffs are more complex: Its total payoff is the sum 
(undiscounted for now) of its payoffs in each stage, where the stage payoffs 
are either all as in Fig. 1 or all as in Fig. 2. The monopolist knows which 
payoff structure obtains. The entrants, on the other hand, initially assess 
probability 6 that the monopolist’s payoff structure is the second one. As the 
game progresses, each entrant (and the monopolist) observes all prior moves. 
Consequently, the history of moves prior to stage n may enable entrant n to 
revise this assessment if the history reveals some information about the 
relative likelihoods of the monopolist’s two possible payoff structures. 

MONOPOLIST’S PAYOFFS 

ENTRANT STAYS OUT 
0 

MONOPOLIST ACQUIESCES -1 

MONOPOLIST FIGHTS 
0 

FIG. 2. Payoffs for a tough monopolist. 



REPUTATION AND IMPERFECT INFORMATION 257 

This model conforms to Harsanyi’s [7] formulation of a game with incom- 
plete information. Alternatively, it is a game with imperfect information 
(among the entrants) and perfect recall, in which “nature” initially 
determines the monopolist’s payoff structure, and nature’s move is observed 
by the monopolist but not the entrants. In line with the first interpretation, 
we refer to the weak monopolist or the strong monopolist, meaning the 
monopolist if its payoffs are as in Fig. 1 or Fig. 2, respectively. . 

Since the players have perfect recall, there is no loss of generality in 
restricting attention to behavior strategies (Kuhn [ 10)). We wish to identify 
a Nash equilibrium of this game and, moreover, we wish the equilibrium 
identified to be perfect. That is, we wish to exclude equilibria that are based 
on expectations by one player of another’s behavior that would not be 
rational for the latter to carry out if called upon to do so. Because our games 
have incomplete information, Selten’s [22] concept of subgame perfection is 
inadequate. His concept of “trembling-hand” perfection (Selten [23]), on the 
other hand, is difficult to employ in games with strategy spaces as complex 
as those present here. So we use an analogous equilibrium concept called a 
sequential equilibrium. This is a refinement for extensive games of the usual 
Nash equilibrium that captures the spirit of Selten’s perfectness criterion but 
that is much easier to apply. General definitions and properties of sequential 
equilibria are given in Kreps and Wilson [9], which we summarize here. 

There are three basic parts to the definition of a sequential equilibrium: 
(a) Whenever a player must choose an action, that player has some 
probability assessment over the nodes in its information set, reflecting what 
that player believes has happened so far. (b) These assessments are 
consistent with the hypothesized equilibrium strategy. For example, they 
satisfy Bayes’ rule whenever it applies. (c) Starting from every information 
set, the player whose turn it is to move is using a strategy that is optimal for 
the remainder of the game against the hypothesized future moves of its 
opponent (given by the strategies) and the assessment of past moves by other 
players and by “nature” (given by the assessment over nodes in the infor- 
mation set). The difference between this and the standard concept of a Nash 
equilibrium is that (c) is required for every information set, including those 
that will not be reached if the equilibrium strategies are followed. So each 
player will be willing to carry out its strategy at every point in the game, if 
ever it is called upon to do so. The properties are: Sequential equilibria exist 
for all finite extensive games. They are subgame perfect Nash equilibria. For 
a fixed extensive form and probabilities of nature’s moves, as we vary the 
payoffs it is generic that all strict sequential equilibria are trembling-hand 
perfect, and the equilibrium path of each sequential equilibrium is an 
equilibrium path for some trembling-hand perfect equilibrium. Every 
trembling-hand perfect equilibrium is sequential. 

In the context of the game analyzed here, the definition of sequential 
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equilibrium specializes as follows. An equilibrium comprises a (behavior) 
strategy for each player and, for each stage n = N,..., 1, a function p, taking 
histories of moves up to stage n into numbers in [0, l] such that: (a) Starting 
from any point in the game where it is the monopolist’s move, the 
monopolist’s strategy is a best response to the entrants’ strategies. (b) For 
each n, entrant n’s strategy (contingent on a history h, of prior play) is a 
best response to the monopolist’s strategy given that the monopolist is strong 
with probability p,(h,). (c) The game begins with pN = 6. (d) Each p,, is 
computed from pn+ , and the monopolist’s strategy using Bayes’ rule 
whenever possible. (We will not write (d) precisely-it will be transparent 
when we give the equilibrium below. That (d) implies “consistency of 
beliefs” in the sense of Kreps and Wilson [9] may not be apparent, but it 
does follow from the simple structure of the game being considered here.) 
The interpretation is that p, gives the probability assessed by entrant n that 
the monopolist is strong as a function of how the game has been played up 
to stage n. Note that in (a) the monopolist’s assessment over nodes in its 
information set is omitted, because all of its information sets are singletons. 

We now give a sequential equilibrium for this game. This particular 
sequential equilibrium has the fortuitous property that, in terms of play from 
stage IZ on, p, is a sufficient statistic for the history of play up to date n. 
That is, the choices of the players at stage n depend only on p, and (for the 
monopolist) the move of entrant n; and p, is a function of pn+, and the 
moves at stage n + 1. We are lucky to be able to find a sequential 
equilibrium with this simple structure: it is not generally the case that one 
can find sequential equilibria for which the players’ assessments are 
sufficient statistics for past play. (See remark (A) below.) 

We begin by giving the functions p,. Set pN = 6. For n < N, if the history 
of play up to stage n includes any instance that entry was met by 
acquiescence, set p,, = 0. If every entry so far has been met by fighting, and 
if k is the smallest index (> n) such that there was entry at stage k, then set 
pn = max(bk-‘, S). If there has been no entry, set p, = 6. 

This corresponds to the following recursive definition: 

(a) If there is no entry at stage n + 1, then p,, =p,,+ , . 

(b) If there is entry at stage n + 1, this entry is fought, and p,,+ , > 0, 
then pn = max(b”, p,+ ,), 

(c) If there is entry at stage n + 1 and either this entry is met by 
acquiescence or p,,+ , = 0, then p,, = 0. 

Now that we have described how pn is computed at every node in the 
game tree, we can give the strategies of the players in terms ofp,. 

Strategy of the Monopolist 

(a) If the monopolist is strong, it always fights entry. 
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(b) If the monopolist is weak and entry occurs at stage n, the 
monopolist’s response depends on n and pn: If n = 1, the monopolist 
acquiesces. If n > 1 and pn > b”- ‘, the monopolist fights. If n > 1 and 
pn < b”-l, the monopolist tights with probability ((1 - b”-‘)p,)/ 
(( 1 -p,) b’-‘) and acquiesces with the complementary probability. (Note 
that when pn = 0, the probability of fighting is zero, and when p, = b”- ‘, the 
probability of fighting is one.) 

Strategies of the Entrants 

If p, > b”, entrant n stays out, If p, < b”, entrant n enters. If p, = b”, 
entrant n randomizes, staying out with probability l/a. 

PROPOSITION 1. The strategies and beliefs given above constitute a 
sequential equilibrium. 

ProoJ We only sketch the proof, leaving details to the reader. In the 
context of this game, there are two things to verify: First, the beliefs of the 
entrants must be consistent with the strategy of the monopolist, in the sense 
that Bayes’ rule holds whenever it applies. Second, starting from any infor- 
mation set in the game, no player has the incentive (in terms of the payoff 
for the remainder of the game) to change its selection of move at that infor- 
mation set. For entrants, this verification is made using the beliefs given 
above. (Once this is verified, the Bellman optimality principle together with 
the fact that beliefs are Bayesian consistent ensures that no player can 
unilaterally change its strategy and benefit starting from any point in the 
game tree.) 

The verification of Bayesian consistency is easy. If no entry takes place at 
stage n, nothing is learned about the monopolist, and we have pnp, =p, in 
such instances. If p, > b”-I, then the monopolist is supposed to fight entry. 
If p, = 0. then the monopolist is supposed to acquiesce. So in these cases, 
Bayes’ rule implies that pnpl =p, (as long as the monopolist follows its 
strategy). In each case, this is what we have. Finally, for p, E (0, b”- ‘), there 
are positive probabilities that the monopolist will acquiesce and that it will 
light entry. It only acquiesces if it is weak, and, indeed, in this case we have 
p,- 1 = 0. If it fights, Bayes’ rule requires that 

pn-, = Prob(monopolist strong 1 monopolist fights) 

= Prob(monopolist strong and lights)/Prob(fights) 

Prob(fights 1 strong) . Prob(strong) 

= Prob(fights 1 strong) . Prob(strong) + Prob(fights 1 weak) . P(weak) 

1 .Pn 
= 1 .P,+ [(Cl -b”-‘)p,,)/((l -P,>b”-‘)I[1 -P,I 

= b”-‘, 

642/U/2-2 
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which is what we have posited. Thus beliefs and strategies are Bayesian con- 
sistent. 

Note that there are two instances in which Bayes’ rule does not apply: 
p,, > b”-’ and the monopolist acquiesces to entry; pn = 0 and the monopolist 
tights. In each case we set pnP1 = 0. In words, we assume that any 
acquiescence is viewed by the entrants as “proof’ that the monopolist is 
weak, and the entrants are unshakeable in this conviction once it is formed. 
This assignment of beliefs off the equilibrium path is somewhat 
arbitrary-there are other assessments that work as well. But this assignment 
is not wholly capricious-there are assessments that would not give an 
equilibrium. (This will be discussed more fully below.) 

(Repeating an earlier contention, this set of assessments is consistent in 
the sense of Kreps and Wilson [9]. A direct proof is not difficult.) 

Verification that the entrants are playing optimally is straightforward. If 
pn > b”-‘, entrant n expects entry to be fought, and so it stays out. If 
p,, E (b”, b”-*), acquiescence will occur with positive probability, but with 
probability less than 1 - 6. Again it is better to stay out. If pn = b”, 
acquiescence follows entry with probability 1 - 6, and the entrant is indif- 
ferent. If p,, < b”, the probability of acquiescence exceeds 1 - 6, and the 
entrant enters. 

To see that the strong monopolist is playing optimally, note that if the 
entrants follow the strategy above, acquiescence at any point results in more 
future entries than does fighting. In the short run fighting is better for the 
strong monopolist, and in the long run fewer entries are better, so the strong 
monopolist will always fight. 

Finally, for the weak monopolist, one can verify inductively that given 
that these strategies are followed from stage n to stage 1, the expected payoff 
to the weak monopolist from stages n to 1 is given by the following function 
of pn: 

u,(P,) = 4t - &3J + 1) + 1 if 6” < p, = bk(Pn’-‘, 

= a(t - k(p,) + 1) if 6” <p,, < bkcpn’-‘, 

=1 if pn = b”, and 

if p, < b”, 

where k(p) = inf(n: b” <p} for p > 0, and k(O) = 00. Now suppose that 
entry occurs at stage n. By acquiescing, the monopolist receives zero both in 
this stage and in the rest of the game (since pn-, will be set equal to zero). 
By fighting, the monopolist receives -1 in this stage and future expected 
payoffs of 0 ifp, = 0, 1 ifp, E (0, b”-‘1, and more than 1 ifp, > b”-‘. Thus 
the weak monopolist is happy to follow the strategy given above. 1 
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It is easiest to understand the nature of this equilibrium by tracing through 
the play of the game for “typical” values of 6 and b, say 6 = l/10 and 
b = l/2. Note that in this case, k(6) = 4. Refer to Fig. 3. At stage N 
(presumed to be greater than 4) the game begins with pN = 6. At this stage, 
the monopolist would fight entry regardless of its payoffs, so entry is 
forestalled. The game evolves along arrow (a) to the point pN- , =pN = 6. 
Note that if there is entry, the monopolist is willing ex post to fight-to 
acquiesce moves the game along arrow (b) to pN-, = 0, from which point the 
monopolist nets zero. Fighting costs 1 immediately, but acquiescing costs 
much more in the future. (Note that all that is necessary is that acquiescence 
cost at least one-as long as acquiescence resulted in pNm, < l/16 this would 

I STAGE N-l 

PN.,’ ’ 

I STAGE N-2 

p,-; 1 

(0 
P&=0) i 

P‘$‘l STAGE 4 

I 

r3- I 

--I 
P2 = I 

-.-I 
p,-0 P, = 1 

STAGE 3 

STAGE 2 

STAGE 1 

FIG. 3. Temporal evolution of the game. 
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be so in this case. So here is one place where the non-Bayesian reassessments 
need not be precisely as specified above to have an equilibrium. But note that 
pN-, < l/16 is necessary-otherwise the weak monopolist would rather 
acquiesce than fight at this stage.) The game continues in this fashion 
(arrows (c), (e), and (f)) until date 4 (=/c(6)). At this date the monopolist 
might acquiesce if it is weak and if it is challenged-the strategy of the weak 
monopolist is chosen so that following entry, acquiescence leads to p3 = 0 
(arrow (g)) and fighting leads to p3 = b3 (arrow (h)). But this does not give 
entrant 4 enough incentive to enter-the game actually evolves along arrow 
(i) to p3 = 6. At date 3 the weak monopolist again will randomize if 
challenged (so that arrows (j) and (k) give the posteriors), and now there is 
high enough probability of acquiescence for entrant 3 to enter. If the 
monopolist acquiesces, the game moves along arrow (j) to pz = 0. At this 
point the monopolist is known to be weak, and entrants 2 and 1 both enter 
with the monopolist acquiescing each time. The monopolist thereafter is 
supposed to acquiesce; if it tights instead at, say, date 2. entrant 1 disregards 
this and continues to believe that the monopolist is weak. That is, p, = 0 if 
either the monopolist acquiesces or if it fights. (Note that we could have 
p1 < l/2 if the monopolist fights, and still we would have an equilibrium. But 
if pI > l/2, then the weak monopolist would prefer to fight, upsetting the 
equilibrium. Again there is some freedom in defining beliefs off the equi- 
librium path, but not complete freedom.) Back at stage 3, if the monopolist 
fights entry, the game moves along arrow (k) to pz = l/4. At this point 
entrant 2 is indifferent between entering and staying out, and chooses 
between the two randomly. If entrant 2 enters, the weak monopolist 
randomizes between acquiescence (arrow (n)) and fighting (arrow (p)). If 
entrant 2 stays out, the game moves along arrow (q) to p, = l/4 (and entrant 
1 surely enters). 

The remarkable fact about this equilibrium is that even for very small 6. 
the “reputation” effect soon predominates. Even if the entrants assess a one- 
in-one-thousand chance that the monopolist would prefer (in the short run) 
to fight, if there are more than ten stages to go the entrant stays out because 
the monopolist will surely fight to preserve its reputation. Note the “discon- 
tinuity” that this causes as the number of stages in the game goes to infinity: 

lim v,(6)/N = a if 6 > 0, and 
N-rCC 

=o if 6=0. 

The obvious question at this point is: To what extent is this equilibrium 
unique? It is not the case that it is the unique Nash equilibrium for this 
game, for the following four reasons. 

(a) There are other Nash equilibria that are not sequential equilibria. 
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(That is, that are not, roughly speaking, perfect.) For example, it is a Nash 
equilibrium for the monopolist to light any entry (regardless of its payoffs), 
and for the entrants never to enter. But this behavior is not “ex post rational” 
for the weak monopolist in stage one. In general, we wish to allow only 
sequential equilibria, and we confine attention to those for the remainder of 
this discussion. 

(b) There are sequential equilibria where the strong monopolist 
acquiesces to entry. For example, if N = 2, b = l/2, and 6 = 213 (very high 
probability that the monopolist is strong), it is a sequential equilibrium for 
entrant 2 to enter, the monopolist to acquiesce to this entry regardless of its 
payoffs, and for entrant 1 to adopt the strategy: Stay out if the monopolist 
acquiesces in stage 2; enter if the monopolist fights in stage 2. (In stage one, 
the monopolist responds with its ex post dominant action.) This is sequential 
because it is supported by the following beliefs of entrant 1: 

Prob(monopolist strong ) acquiescence in stage 2) = pz = 2/3, 

Prob(monopolist strong 1 fight in stage 2) = l/4. 

For the given strategies, the first of these reassessments follows from Bayes’ 
rule, and the second is “legitimate” because Bayes’ rule does not apply: 
There is zero prior probability that the monopolist will light in stage 2. 

Although this is a sequential equilibrium, we contend that it is not very 
sensible. The flaw is in the beliefs of entrant one-if there is lighting in stage 
2, entrant 1 revises downward the probability that the monopolist is strong. 
Intuitively it seems at least as likely that the strong monopolist would defect 
and light as that the weak monopolist would do so. Thus it seems intuitive 
that entrant one will assess 

Prob(strong 1 fight) > Prob(strong ( acquiesce). 

But if we insist on this condition holding, then the equilibrium given 
immediately above is excluded. 

Putting this formally, we will call the beliefs {p,} of the entrants plausible 
if given two histories h, and h; of play up to stage n, if h, and h; are the 
same except that some plays of “fight” in h, are “acquiesce” in hi, then 
p,(h,) >p,(h;). We wish to allow only sequential equilibria that are 
supported by plausible beliefs. Note that this is not true of the equilibrium 
immediately above, but it is true of the equilibrium Proposition 1. 

(c) In the sequential equilibrium given in this section, there is some 
freedom in describing what happens off the equilibrium path. For example, 
we have said that if pn = 0 and the monopolist fights entry, then the entrants 
set p, _ I = 0. Thus once p, = 0 in our equilibrium, every subsequent entrant 
enters. But we would also have an equilibrium if we set pn-, = b”-’ after 
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such a defection from the equilibrium, and then entrant n - 1 would 
randomize between entering and staying out. Note well, this concerns the 
behavior of entrant n - 1 only off the equilibrium path, but in terms of 
strategies it is a different equilibrium. We cannot hope to have uniqueness off 
the equilibrium path. 

(d) Finally, there is a bit of freedom in defining equilibria along the 
equilibrium path when 6 = b” for some n < N: The behavior of entrant n in 
this case need not conform to the strategy above-any randomization will 
work. 

Except for these four problems, we do get uniqueness: 

PROPOSITION 2. If 6 # b” for n < N, then every sequential equilibrium 
with plausible beliefs has on-the-equilibrium-path strategies as described 
previously. Thus every sequential equilibrium with plausible beliefs has the 
value functions given above. 

The proof is by induction and is left to the reader. We simply note that in 
carrying out the induction one establishes the following: 

(a) The value function of the strong monopolist (in equilibrium) will be 
a nondecreasing function of p,, , and the strong monopolist will therefore fight 
any entry. 

(b) The value function of the weak monopolist will be a nondecreasing 
function of pn and will be given by the formula in the proof of Proposition 1 
for 6 # b”, m < n. 

(c) If there is entry at stage n and if the monopolist lights this entry, 
then entrant n - 1 must stay out with probability exactly l/a. 

By going through this proof, the reader will see the intuition behind this 
equilibrium, which we will try to summarize here. As long as beliefs are 
plausible, the strong monopolist will always fight entry. Thus any 
acquiescence is conclusive proof that the monopolist is weak. Moreover, 
such evidence once given must result in zero payoff for the monopolist-the 
argument of Selten that we have given in Section 1 applies (with minor 
modifications). If entrant n is to enter, then it must be that there is 
probability 1 - b (at least) that the monopolist will acquiesce, which requires 
that the weak monopolist is randomizing or simply acquiescing. This also 
requires that pn & b, and, from Bayes’ rule, that if this entry is met by 
fighting, then pnPl ap,/b. Thus if we begin with 6 > b”, there can be at 
most m entrants who have a positive probability of entering. As N gets large, 
then, the value to either monopolist must asymptote to aN, and, for N > 2m, 
the weak monopolist would always wish to light entry. (In fact, in the 
equilibrium in turns out that this is true for N > m.) 
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We close this section by listing several extensions and embellishments of 
the basic model. 

(A) We have dealt above with the case a > 1. If 0 < a < 1, then the 
same basic structure for the equilibrium emerges, in that for sufficiently large 
n, entrants do not enter because the monopolist will fight with probability 
one. The play near the end of the game is more complicated however. In 
particular, one cannot obtain an equilibrium where entrant n’s strategy 
depends only on p,--it depends instead on p, and the history of play in the 
last j rounds, where j is the smallest integer such that &I > 1. 

(B) If the monopolist discounts its payoffs by a factor p per period, the 
following results. If p > l/a, then the equilibrium is precisely as above except 
that the randomizing probabilities of the entrants must change. If 
p < l/(u + 1), then the equilibrium is quite different-the weak monopolist 
acquiesces at the first entry, so entrants enter ifp, < b and stay out ifp, > b. 
For p such that l/(u + 1) < p < l/u, the basic character of the equilibrium is 
just as in the case of p > l/u-for large enough n entrants stay out because 
the monopolist will fight any entry. But the equilibrium is complicated for 
small n, resembling the equilibrium in the undiscounted case where a < 1. 

(C) Suppose that instead of the sequential game depicted in Fig. 1, each 
stage consists of a two-by-two simultaneous move game, Table I, where the 
payoffs with probability 1 - 6 are shown in (a) and the payoffs with 
probability 6 are shown in (b). (We assume 0 < b < 1 and a > 1.) Otherwise 
the structure of the game is the same: One of these two bimatrices is chosen 
at the outset, according to the probabilities given. One monopolist plays 
against N entrants in sequence. The monopolist knows which bimatrix was 
chosen; the entrants do not. 

For 6 = 0, the argument of Selten is easy adapted to show that the unique 
equilibrium (perfect or not) has row 2, column 1 played in each stage. This 
is because row 2 is strongly dominant in the stage game. But for 6 > 0 we 
get an equilibrium almost identical to the one discussed above: For stages n 
such that b” < 6, the monopolist plays row 1 regardless of which bimatrix 
was selected, and the entrant responds with column 2. (The play of the game 
is a bit different near the end of the game.) So we see that a little incomplete 

TABLE I 

(a) (b) 
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information can not only make an imperfect equilibrium perfect (more 
accurately, sequentialFit can also make as part of a sequential equilibrium 
the play of an action that with very high probability is strongly dominated in 
the stage game. 

(D) Paul Milgrom has pointed out to us that similar equilibria can be 
found even when every player in the game knows the payoffs of the 
monopolist, as long as this knowledge is not common knowledge. That is 
suppose all the entrants know the monopolist’s payoffs, but they are not 
certain whether their fellow entrants have this information. Then (with the 
proper precise specification) they fear that the weak monopolist will fight 
(for large n), in order to maintain its reputation among the other entrants. 
This being so, the entrant will not enter. And the monopolist, even if it 
knows that all the entrants know that it is weak, may be willing to tight 
entry early on, in order to help “convince” subsequent entrants that it (the 
monopolist) is not sure that the entrants know this. (Precise arguments of 
this form are found in Milgrom and Roberts [ 131.) Selten’s argument 
requires that it is common knowledge that the monopolist is weak. In real- 
life contexts this is a very strong assumption, and weakening it ever so 
slightly (more slightly than we have done above) can give life to the 
“reputation” effect. 

(E) We have dealt exclusively with the case of a single monopolist 
playing against N different entrants. Another interesting case is where a 
single monopolist plays N times against a single entrant. For the game we 
have analyzed in this section, this turns out to have no effect on the 
equilibrium. (We leave this to the reader to verify.) But as we shall see in the 
next section, this is due (at least in part) to the fact that there is no uncer- 
tainty about the payoffs of the entrants. 

4. TWO-SIDED UNCERTAINTY 

In this section we consider what happens when the monopolist is unsure 
about the payoffs of the entrants. The most interesting formulation of this 
problem is where a single monopolist plays the stage game of Fig. 1 a total 
of N times against a single opponent. The payoff to each player is the sum of 
the player’s payoffs in each stage. The monopolist’s payoffs are as in Fig. 1 

or Fig. 2, with probabilities 1 - 6 and 6, respectively. The entrant’s payoffs 
are as in Fig. 1, for some b such that 0 < b < 1 with probability 1 - y and 
for some other b > 1 with probability y. Each player knows its own payoffs 
at the start of the game, and each is unsure of the payoffs of its opponent. 
The payoffs are statistically independent. 

Continuing the terminology of Section 3, we shall refer to the weak entrant 
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as the entrant if its payoffs satisfy 0 < b < 1, and the strong entrant if its 
payoffs satisfy b > 1. 

Note that the strong entrant does better to enter than to stay out in any 
stage, even if the monopolist is sure to fight. Because it seems plausible that 
entry will not decrease the probability that the monopolist will acquiesce 
subsequently, we look for equilibria where the strong entrant always enters. 
Thus any failure to enter brands the entrant as weak, at which point we are 
back to the situation of Section 3. (Recall that it did not matter there 
whether there was a single entrant or N entrants.) Similarly, we look for an 
equilibrium where the strong monopolist always fights. Thus any failure to 
tight brands the monopolist as weak, following which the entrant always 
enters and the monopolist always acquiesces. We search, then, for an 
equilibrium of the following sort: The strong entrant always enters. The 
strong monopolist always fights. The weak entrant chooses a strategy that is 
a mixture of “stopping rules”: A stopping rule gives the date at which the 
entrant will “give in” and not enter if the monopolist has not acquiesced yet. 
(The entrant may later re-enter, as we will then follow the equilibrium of 
Section 3.) The weak monopolist will also mix among stopping rules: A 
stopping rule for the monopolist gives the date at which the monopolist will 
first acquiesce if the entrant has not retreated first. If one side or the other 
gives in, we move to either the situation of Section 3 or to where entry- 
acquiescence follows until the game ends. 

Giving a complete specification of the equilibrium that is obtained is 
extraordinarily tedious, because it is based on some very involved recursions. 
Still, we can give a rough description of what happens. At any stage n the 
previous play of the game is summarized into two statistics: p,, the 
probability assessed by the entrant that the monopolist is strong; qn, the 
probability assessed by the monopolist that the entrant is strong. (The game 
begins with pN = 6 and qN = y.) Thus the “state space” of the game at stage n 
is the unit square, as depicted in Fig. 4. The edge q, = 0 is the subject of 

FIG. 4. State space of the game at stage n. 
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Section 3. The edge p,, = 0 can be analyzed using the argument of Selten 
with the conclusion: The entrant always enters, and the weak monopolist 
always acquiesces. 

The square is divided into two regions by a curve, as shown. If (p,, qn) 
lies in region I, say at the point x, then the entrant enters regardless of its 
payoffs, and the weak monopolist randomizes. If the weak monopolist 
acquiesces, the game evolves to the pointy (actually, to this point in the next 
square-the square for stage n - 1). If it lights, or if it is strong and hence 
tights, the entrant uses Bayes’ rule to compute p, _ r, landing at the point z 
on the curve, and just beyond the curve in region II of the next square. If 
(p,, qn) lies in region II, say at x’, then the weak entrant randomizes. If it 
stays out, the equilibrium of Section 3 ensues-and the next stage begins a 
the point y’. If it enters (or if it is strong and therefore enters), the 
monopolist recomputes the probability that it is strong, landing at the point 
x” along the curve. Then the monopolist randomizes (if weak), and the game 
evolves to y” or to z”. Both z and z” are in region II of the next square, so 
the next round begins with randomization by the weak entrant, and so on. 

Except for the very start of the game, when pN = 6 and qn = y, most of the 
play takes place along the curve. (Actually, the curve shifts slightly as n 
changes.) So we see an initial jump to the curve (or to one of the two edges), 
followed by a slow climb up the curve with ever present the chance that a 
jump to one of the edges will occur. With probability one, a weak player will 
eventually give in, so we either jump to an edge eventually or, if both players 
are strong, we reach the point p. = q. = 1. This is a game of “chicken,” 
where once begun, each side (if weak) randomizes between a small 
probability of giving in and a large probability of daring the other side for 
one more round. The relative size of these probabilities is required by the 
conditions of an equilibrium: Daring once more costs something this round, 
but giving in is costly for the rest of the game. So it must be that daring once 
more does not give either player a substantial chance of immediate gain; the 
opponent must be about to “dare” once again with large probability. 

While it is tedious to give the exact equilibrium in the discrete time 
formulation, it is relatively simple to do so in a continuous time version of 
the game. So we shall now develop that continuous-time version. (We should 
forewarn the reader: We will be somewhat sloppy in what follows. But 
everything we say can be made exact.) 

To begin, consider the game of Section 3 played against a single entrant 
over the time period N to 0. Instead of playing at times N, N - I,..., I, for the 
stakes (per stage) given in Section 3, we imagine that an integer K is given, 
and that the game is played “more frequently, for reduced stakes,” with play 
at times N, (KN - 1)/K, (KN - 2)/K ,..., l/K, for stakes l/K times the stakes 
given. It is the number of times that the monopolist has left to demonstrate 
its “toughness” that is decisive in Section 3, so we find that if k(6) = n, the 
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entrant stays out (and the monopolist would surely fight) at all times 
t > n/K. As K goes to infinity, we see that the entrant stays out until “the 
very last instant” of time. 

With this limiting result as motivation, we now consider the “continuous- 
time” version of the above game, played over a time interval T to 0. At each 
time t E [T, 01, the entrant chooses whether to enter or to stay out, and the 
monopolist chooses whether to fight entry or to acquiesce. A realization of 
the entrant’s strategy is formalized as a (measurable) function e: [T, 0] -+ 
(0, 1 }, where e(r) = 1 means that the entrant is entering at date t. A 
realization of the monopolist’s strategy is formalized as a function 
f: [T, O]-, {O, 11, where f(t) = 1 means that the monopolist is fighting at 
date t. (We have a “closed-loop” game, so pure strategies would be a pair of 
functions e and f where e(t) is F((e(s), f(s)), s < t)-measurable, and f(t) is 
F(f(s), s < t; e(s), s < t)-measurable. We shall not try to be more precise 
about this here; instead we trust the reader’s ability to see how to formalize 
what follows.) Given realizations e and f, payoffs to each side are determined 
by measuring the lengths of times during which there is not entry (e(t) = 0), 
during which entry is fought (e(t) = 1, f(t) = l), and during which there is 
acquiescence to entry (e(f) = 1, f(t) = 0), and assigning payoffs accordingly. 
For example, if A denotes Lebesgue measure, then the weak monopolist’s 
payoff is 

A(e(t) = 0} a a - A{e(t) = l,f(t) = l}. 

In this game, an equilibrium calls for the entrant to stay out as long as the 
monopolist does not acquiesce and to always enter after any acquiescence is 
observed; for the strong monopolist to fight any entry; and for the weak 
monopolist to tight as long as it has not acquiesced yet and to acquiesce 
forever after an acquiescence. The reader can easily verify that this is an 
equilibrium. Moreover, if by some “mistake” the entrant entered before time 
0, the weak monopolist would want to fight: By acquiescing it saves an 
“instantaneous” one unit, but then it invites entry for the remainder of the 
game-a substantial loss that outweighs the instantaneous savings. 

(The reader is entitled to be somewhat skeptical about this. By moving to 
a continuous-time formulation, we have obtained some of the features of the 
supergame (infinitely repeated) formulation. For example, the equilibrium 
above is “perfect” even if 6 = 0, just as in the supergame with 6 = 0. But in 
the case 6 = 0, this equilibrium is not the limit of discrete-but-more-rapid 
equilibrium play. What justifies this particular equilibrium in the case 6 > 0 
is that it is the limit of discrete equilibria. We shall return to this point after 
we discuss the case of two-sided uncertainty.) 

Now consider the continuous-time game where there is uncertainty on 
both sides. The formulation is as above, but now there is uncertainty (at the 
outset) about the entrant’s payoffs as a function of the realizations of e andJ 
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We are looking for an equilibrium with the following characteristics: (1) The 
strong monopolist always tights. (2) The strong entrant always enters. (3) By 
virtue of (l), if the monopolist ever declines to fight an entry, it is revealed 
as weak. Thereafter, the entrant always enters and the weak monopolist 
always acquiesces. (4) By virtue of (2), if the entrant ever fails to enter it is 
revealed as weak. Assuming that the monopolist has not previously been 
revealed as weak, the game proceeds as above, with the weak entrant staying 
out until the end and the monopolist always ready to fight. 

Just as in the discrete time formulation, an equilibrium with these features 
can be recast as an equilibrium in “stopping rules” for the weak entrant and 
monopolist-each choosing the date at which it will “give in” if its opponent 
has not given in yet. If the entrant gives in first (at date t), then regime (4) 
above takes effect, with the weak monopolist obtaining at for the rest of the 
game, and the weak entrant receiving 0. If the monopolist gives in first at t, 
regime (3) ensues, with the weak entrant receiving bt and the weak 
monopolist receiving 0. Until one side or the other gives in, the weak 
monopolist receives -1 per unit of time, and the weak entrant receives b - 1 
per unit of time. The equilibrium condition is that each player’s stopping 
time should be optimal given the probability distribution of the other’s, and 
given the assumption that the other player, if strong, will never give in. This 
game is very similar to the “war of attrition” game; cf. Riley [ 161 and 
Milgrom and Weber [ 141. It is formally equivalent to a two-person 
competitive auction, where the stopping times are reinterpreted as bids. This 
observation will be especially useful later when we discuss the connection 
between this continuous-time formulation and the discrete-time formulation 
of the game. (We are indebted to Paul Milgrom for acquainting us with the 
“war of attrition” and for pointing out the relevance of his work with 
Weber.) 

It is easiest and most illustrative to present the equilibrium using a 
diagram similar to Fig. 4. In Fig. 5 we have the “state space” of this 
game-the unit square, interpreted exactly as in Fig. 4. The bottom 
boundary is where the entrant is known to be weak. Along this boundary 
(excluding the left hand endpoint) the weak monopolist’s payoff function (at 
date t) is ul(p, 0) = at and the weak entrant’s is ul(p, 0) = 0. The left hand 
boundary is where the monopolist is known to be weak-here (including the 
bottom endpoint) v,(O, q) = 0 and ~~(0, q) = bt. 

The nature of the equilibrium is just as in the discrete case: The state 
space is divided into two regions by a curvef(p, q) = 0 that passes through 
the points (0,O) and (1, 1). If the initial data of the game place us in 
region I, then the game begins with the entrant entering for sure and the 
monopolist (if weak) randomizing between fighting and immediate 
capitulation. This randomization is such that if the monopolist does fight at 
time T, the entrant revises its assessment that the monopolist is strong so as 
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Vt (p,O)= at, ut (p ,O):O 

p- PROBABILITY THAT THE 
MONOPOLIST IS STRONG 

FIG. 5. State space of the continuous-time game. 

to go to the curve f(p, q) = 0. From region II it is the (weak) entrant that 
randomizes between immediate capitulation and entry-if it does enter, the 
monopolist revises its assessment that the entrant is strong up to a point 
where the curve f(p, q) is reached. Thereafter, the weak monopolist and 
weak entrant randomize “continuously” between keeping up the tight and 
capitulating-this is done in a fashion so that as long as they continue to 
fight, the Bayesian reassessments of each side that the other is strong causes 
(p,, qr) to slide up along the curve toward (1, 1). (Of course, if one side or 
the other capitulates, transition is made to the appropriate boundary.) There 
is a time P > 0 such that by this time, one side or the other (if weak) has 
given in with probability one-if both sides are strong, at this time the point 
(1, 1) has been reached, and we remain there until time t = 0. 

The difference between this equilibrium and the one for the discrete time 
game (and the reason that this one is so much easier to compute) is that the 
curvef(p, q) = 0 does not change with t in the continuous-time case. This is 
so because in the continuous-time version of the game, a game of duration 
T/2 is strategically equivalent to a game of duration T, so long as the priors 
(6, y) are the same. All that changes is that everything takes place twice as 
rapidly-we could as well think of the game taking place at the same speed 
but for half the stakes. The values are half as large, but nothing else changes. 

We now present a heuristic derivation of the equilibrium, assuming that it 
has the form outlined above. Note first that along the curve the value 
functions for each side must be identically zero. This is so because (by 
hypothesis) both sides are randomizing continuously, and one outcome of 
these randomizations transfers them to points (the lower boundary for the 
entrant and the left-hand boundary for the monopolist) where the value 
function is zero. Let rcI(pI, q,) and pI(pI, qJ be the hazard rate functions 
associated with the weak monopolist’s and entrant’s randomizations at time t 
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with posteriors pI and qt lying along the curve. That is, in the time interval 
(t, t - h) there is (up to terms of order o(h)) probability (1 -pl) . 
n,(p,, qJ . h that the monopolist will give in, and (1 - ql) . pl(pr, qt) . h that 
the entrant will give in. Assuming sufficient continuity, if the value functions 
are to be constant (and zero) along the curve, it is necessary that the 
expected change in value to the weak monopolist be zero. Up to terms of 
order o(h), this is 

-h + [(I - 41) . Pt(Pt, 4r) . hlbtl = o(h). 
That is, the weak monopolist’s immediate cost 4 of keeping up the bluff 
should be offset by the small chance (1 - qJ . pI(pI, q,) + h that the entrant 
will give in times the large gain ut that will accrue in this event. The 
analogous argument for the entrant gives 

(b - 1)h + (1 -pJ * 7T,(pt, qJ * hbt = o(h). 

Dividing by h and passing to the limit, we get 

Pt(Pv 4r) = l/Ml - 41)) and %(P,Y 4t) = (1 - b)lW(l -P,>)* 

Consider next the evolution of the posteriors pt and qt. The probability 
table that the monopolist would construct at date t for the joint probability 
distribution that the entrant is weak or not and will give in or not in the 
interval (t, t - h) is given in Table II (up to terms of order o(h)). Thus the 
conditional probability that the entrant is strong, conditional on not giving in 
over the interval (t, t - h), is 

qt-h = 4dll - (1 - 4t)Pt(Pt, 4Jhl. 
Thus, ignoring terms of order O(h), 

(91 - qt-/J/h = 4r(l - 4t)Pt(Pt, St>* 

Passing to the limit, this gives 4, = (ql - q:) pI(pt, qJ = qJ(at). Similarly 
p, =p,(l - b)/(b). Thus along the curve we must have 

&t/d’, = (q,b)l((l - b) UP,>. 

TABLE II 

weak s+rO”g 

qive m  (1 - s+)p,~~+,o+)h 0 (1 - 0, )p, (P, ,o,lh 

not (1 -q,)(l -p,(p,,q+)h) 41 1 - (1 - q,)p,(~,,q+)h 

(1 - 9, 1 41 
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This is independent of t, and it is easily integrated to give qr = k(pJC where 
k is a constant of integration and c = b/((l - b)a). To ensure that (1, 1) is 
on the curve, we must have k = 1. Therefore the curve is given by 

f(p, q) s q”-b’lb -p = 0. 

(Note well the normalization of k so that (1, 1) is on the curve. This will be 
important later on.) 

We can solve similarly for q1 and pt. Integrating 4, = q,/(at) yields 
qf = k’t-‘I”. Analogously, pI = k”t- (l-b”b The constants k’ and k” are . 
determined by the initial conditions. Suppose, for example, that we initially 
have a prior (6, y) that lies in region II. Then the initial randomization is by 
the weak entrant and yields posterior qT = 6’ if the entrant does enter. 
Solving for k’ yields k’ = ~5’Tl’~. Solving for k” yields k” = BT(l-bf’b. Thus 

pr = B(T/t)(l-b’fb and qI = ,c(T/t)“? 

Note that these yield pt = 1 and q1 = 1 for t = TP = T66”1-b’. (Of course, 
both p1 and qt hit one simultaneously as the curve has been normalized to 
pass through (1, l).) The point to note here is that in this equilibrium, the 
posterior (1, 1) will be reached at a time T” strictly between T and 0 (unless 
6 = 0 or 1) so long as neither player gives in previously. But of course, the 
posterior (1, 1) can only be reached if with probability one both of the weak 
players would have given in. So, according to this equilibrium, if the two 
players are both strong, they will learn this before the game terminates. Put 
another way, the date To previously referred to is 86/(1-b)T (for (6, r) in 
region II). The formulae change somewhat for (6, y) in region I, but the 
qualitative conclusions are the same. 

Does this heuristic derivation hold up? That is, do we really have an 
equilibrium? There are two things to worry about. First, in several places the 
heuristic arguments that we give depend somewhat on sufficient regularity of 
the functions rr, and pt. The reader can make these arguments rigorous for 
the functions that we derived. Second (and more substantially), the necessary 
conditions that were developed for rr, and pI were necessary for the value 
functions to be constant along the curve. To have an equilibrium we require 
somewhat more: The value functions must be identically zero along this 
curve. This is where the normalization of the curve comes in: At the point 
(1, l), the value functions are clearly zero for each weak player, as each is 
certain that the other is strong. Put another way, suppose (once the curve is 
reached) that one side or the other is weak and decides not to randomize but 
simply to wait out its opponent. The conditions that gave us rrl and p1 ensure 
that the change in expected value is zero as this goes on. (For the technically 
minded, apply Dynkin’s formula to the appropriate generalized Poisson 
process.) And at date To, if nothing has happened the player that is waiting 
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knows that its opponent is strong-it should immediately give in for a value 
of zero. Thus the value all along the curve is zero. This, with a little careful 
argument, sufftces to show that we really do have an equilibrium. 

Two final comments about this equilibrium seem in order. First, the value 
functions to each (weak) player are easily computed. In region II, they are 
z+(c?,~) = 0 and ~~(6, y) = [(SC - y)/6’] UT; in region I, they are ~~(6, y) = 
[(y”’ -6)/y”‘] bT and ~~(6, JJ) = 0. That is, they are simple linear inter- 
polates of the value of zero along the curve and the values along the bottom 
boundary in region II and the left-hand boundary in region I. 

Second, we noted earlier that the continuous-time formulation can 
introduce equilibria that are not limits of the equilibria for discrete-time 
models. We should like to know that the continuous-time equilibrium just 
presented is indeed the limit of the discrete-time equilibrium with which we 
began this section. We have not checked all the details, but we are quite sure 
that this is so. To see this, recall that the discrete time game can be posed as 
an optimal stopping problem where the entrant is limited to stopping at, say, 
discrete times T, (TK - 1)/K,..., l/K and the monopolist is limited to 
stopping at times (say) T - 1/(2K), (TK - 3/2)/K,..., 1/(2K). The 
continuous-time problem is one where stopping at any time t E [T, 0] is 
possible. It is easy to move from the discrete-to-continuous-time versions of 
the problem when there is one-sided uncertainty, so we know that we have 
convergence of the value of “stopping” at particular times. As K goes to 
infinity, the sets of available strategies also converge, and the methods of 
Milgrom and Weber [ 141 apply to show convergence of the equilibria of the 
discrete games to the continuous-time version. (Indeed, Paul Milgrom has 
shown us how, by viewing the continuous-time game as a game in 
distributional strategies, it is simple to derive the equilibrium given above.) 

Before concluding this section, we also note that this gives just one sort of 
formulation of the problem with two-sided uncertainty. We might consider 
what happens when a single monopolist plays against a succession of 
different entrants (each of whom plays the game once), where the monopolist 
is uncertain of the entrants’ payoffs. In such a game we would have to 
specify the way in which the entrants’ payoffs are related-they might all be 
identical (perfectly correlated, from the point of view of the monopolist), or 
they might be independently and identically distributed, or something 
between these two extremes. Both of these extreme cases are analyzed in 
detail in Kreps and Wilson [8]. The case of identical entrants gives the most 
interesting comparison with the model analyzed above: With identical 
entrants who only play the game once, the first entrant nearly always “tells 
the truth” by refusing to enter if weak, and the weak monopolist will with 
substantial probability fight the first few entries, just to keep the weak 
entrants “honest.” What this illustrates is that the game of “chicken” that we 
see above requires both two-sided uncertainty and that each side has a stake 
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in maintaining its reputation. When it is only one side that will participate in 
many stages, the other has little motivation to dissemble and will not light 
too hard to attain/maintain its reputation. (Another interesting formulation 
of the problem is where there is a population of entrants and a population of 
monopolists, and in each round there is a random assignment of one 
monopolist to one entrant, in the manner of Rosenthal [ 181 and Rosenthal 
and Landau [ 191. We have done no analysis of this formulation.) 

5. DISCUSSION 

We have presented these simple examples to illustrate formally the power 
of “reputation” in finitely repeated games. That reputation is powerful in 
reality is very well appreciated: In the context of Industrial Organization, 
recall the quotation from Scherer in Section 1. Consider the importance of 
reputation in contract and labor negotiations; in a firm’s employment 
practices; in a firm’s “good name” for its product; in the maintenance of a 
cartel (or in the prisoners’ dilemma game); in international diplomacy. To 
each of these contexts, our analytical structure can be applied to yield the 
conclusions: If the situation is repeated, so that it is worthwhile to maintain 
or acquire a reputation, and if there is some uncertainty about the 
motivations of one or more of the players, then that uncertainty can substan- 
tially affect the play of the game. There need not be much uncertainty for 
this to happen. The power of the reputation effect depends on the nature of 
one’s opponents; notably on whether they also seek to acquire a reputation. 

Phenomena that bear the interpretation of “reputation” are not entirely 
new to the literature of formal game theory. They are implicit in much of the 
literature on super-games, where the stage game is repeated infinitely often, 
or where there is always high enough probability of at least one more 
repetition (Rubinstein [20] is a representative citation). Indeed, Dybvig and 
Spatt [6] make explicit use of the reputation interpretation in a super-game 
context. What is new in this paper (and in Milgrom and Roberts [ 131) is the 
observation that with a very little imperfect information, these effects come 
alive in finitely repeated games. Comparing the two approaches is difficult, 
but it is worth noting that in the models reported here, the problem of 
multiplicity of equilibria that plagues the super-game literature is substan- 
tially alleviated. Also, we believe that we have interesting models of the sorts 
of “wars” that might go on between players to see which equilibrium will 
ensue. But we are far from ready to make a very informed comparison of the 
two approaches-at this point, we can only claim that this seems to be an 
interesting alternative way to produce reputation effects. 

A point made briefly in Section 3 is worth repeating here. To keep matters 
simple, we posited the simplest type of uncertainty: Players are uncertain 
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about the payoffs of their fellows. But it does nearly as well if there is no 
uncertainty about players’ payoffs, but there is uncertainty about whether 
this is so. In the parlance of game theory, for these effects to disappear, 
payoffs must be common knowledge. (Milgrom and Roberts [ 131 present 
formal models to back up this contention.) This is a very strong assumption 
for any real-life application. 

The reader may object that in order to obtain the reputation effect, we 
have loaded the deck. That is, we have a model where reputation is easily 
shattered, making it all the more valuable; there are at most two types of 
each player; and each player has only two possible actions. To the first of 
these criticisms we plead guilty: The power of reputation seems to be 
positively related to its fragility. As for the second, the models of Milgrom 
and Roberts [ 131 have continua of types of monopolists, so this does not 
seem crucial to our conclusions. And to the third, we do admit that this has 
made it easy for us to get a “pooling equilibrium” (to borrow a term from 
the insurance literature), where one type successfully mimics another. The 
analysis of Milgrom and Roberts [ 121 shows that with a continuum of 
actions, one can also get screening equilibria in these sorts of models. But 
this is not necessary: Crawford and Sobel [3] investigate a class of models 
with a continua of actions where some pooling is necessary in any 
equilibrium. The assumption of only two actions makes things easier for us. 
but we doubt that it is crucial. 

What is evident from our simple examples is that a very little uncertainty 
“destabilizes” game-theoretic analysis in games with a fairly large number of 
stages. The reader may suspect that something more is true: By cleverly 
choosing the nature of that small uncertainty (precisely-its support), one 
can get out of a game-theoretic analysis whatever one wishes. We have no 
formal proposition of this sort to present at this time, but we certainly share 
these suspicions. If this is so, then the game-theoretic analysis of this type of 
game comes down eventually to how one picks the initial incomplete infor- 
mation. And nothing in the theory of games will help one to do this. 

This reinforces a point made by Rosenthal [ 171. Rosenthal investigates the 
original chain-store game and makes the point with which we began: The 
paradoxical result in Selten’s analysis is due to the complete and perfect 
information formulation that Selten uses. In a more realistic formulation of 
the game, the intuitive outcome will be predicted by the game-theoretic 
analysis. Rosenthal does not provide this analysis, despairing of the analyst’s 
ability to solve an adequate formulation. Instead, he suggests an analysis 
using the paradigm of Decision Analysis, where one tries to assess directly 
how the entrants will respond to early round fighting by the monopolist. 
Such an analysis can certainly lead to the intuitive outcome, as shown by 
Macgregor [ 111. But, as Rosenthal notes, the weakness in this approach is 
the ad hoc assessment of entrants’ behavior. We have carried out a game- 
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theoretic analysis of one very simple incomplete information formulation. 
We therefore have avoided ad hoc assumptions about the entrants’ behavior. 
But we have made ad hoc assumptions about their information, and we have 
found that small changes in those assumptions greatly influence the play of 
the game. So at some level, analysis of this sort of situation may require ad 
hoc assumptions. 

We have presented models in this paper that demonstrate the reputation 
effect as simply and as powerfully as possible. In order to do this, we have 
not tried to model realistic settings from Industrial Organization or some 
other economic context. (Milgrom and Roberts [ 13) rectify this deficiency: 
They concentrate somewhat more on the application of these ideas.) To 
illustrate how these ideas might be applied, we close with two examples. 

The first concerns the problem of entry deterrence, especially the papers of 
Spence [26] and Dixit [4,5]. These papers take the basic framework of Bain 
[ 1 ] and Sylos [27] and ask: What can the monopolist do prior to the 
entrant’s decision point to make predation optimal in the short run? (The 
answers they give include such things as expanded capacity, sales networks, 
etc.) The relevance of this question is that the threat of predation is only 
credible if predation is ex post the optimal response, so the monopolist must 
make it so in order to forestall entry. What our model suggests (and what 
can be demonstrated formally) is that in repeated play situations, the actions 
taken by the monopolist need not make predation actually ex post 
optimal-what they must do is to make predation possible and, perhaps, 
increase the probability assessed by the entrants that it is expost optimal. If 
deterrence is the objective, the appearance and not the reality of ex post 
optimal predation may be what is important. 

The second context is that of a monopolist producer of a durable capital 
good where, for whatever reason, the monopolist is unable to maintain a 
rental market but must sell outright his product. In a multiperiod setting, 
where the monopolist is assumed to be sequentially optimizing, this can 
severely diminish the monopolist’s market power. (See Bulow [2] and Stokey 
[25].) Supposing the monopolist produces subject to a capacity constraint, 
the monopolist is often berter off with a tighter constraint. This is because 
the constraint prevents the monopolist from “over-producing.” Then, if that 
constraint is the matter of private information for the monopolist, a 
monopolist with a loose constraint can successfully (in an equilibrium) 
masquerade as having a more stringent constraint, thereby recouping some 
of his lost market power. In essence, as the number of periods goes to 
infinity (as one comes closer to a continuous-time formulation), the 
monopolist can successfully attain the reputation of a “low capacity” 
producer even if his capacity is (with probability approaching one) high. 
Moorthy [ 151 presents an example along these lines. 
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