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Economists often argue that predatory practices are irrational, since there exist 
cheaper or more certain means to gain or maintain a monopoly. Our game- 
theoretic, equilibrium analysis suggests that if a firm is threatened by several 
potential entrants, then predation may be rational against early entrants, even if it is 
costly when viewed in isolation, because it yields a reputation which deters other 
entrants. Asymmetric information plays a crucial role in our analysis, since it 
provides the rationale for entrants to base their expectations of the firm’s future 
behavior on its past actions. The analysis also suggests methods to treat general 
reputational phenomena. Journal of Economic Literature Classification Numbers: 
611, 022, 026, 612. 

1. INTRODUCTION 

Allegations of price cutting or similar tactics aimed at driving a rival out 
of business are frequently heard, both in and out of law courts. Yet a large 
fraction of the economics profession would argue that such predation is an 
irrational strategy for attempting to gain or maintain a monopoly position 
and that it is, therefore, unlikely to be adopted in practice. This position rests 
on arguments that predation is costly to the predator and is unlikely to 
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succeed in driving out a rival who understands that the price cutting is 
temporary. Further, it is held that even if the rival is eliminated, any attempt 
to raise prices so as to reap the benefits of the monopoly position may 
attract new entrants. Thus, any monopoly gains would be short-lived. ’ (See, 
e.g., McGee [ 10, 111 for full expositions of these arguments, as well as some 
indication of the nature of the opposing views.) 

In this paper we present a model in which predation emerges as a rational, 
profit-maximizing strategy. In this model, predation is practiced not because 
it is directly profitable to eliminate the particular rival in question, but rather 
because it may deter future potential entrants. The mechanism by which this 
deterrent effect comes about is that by practicing predation the firm 
establishes a reputation as a predator. This reputation then leads potential 
entrants to anticipate that the incumbent firm will behave similarly if they 
should enter, and, thus, entry appears less attractive to them. 

In this context, it is worth noting that predation will emerge in our model 
even if, as asserted by those who doubt the rationality and relevance of 
predatory strategies, predation against a particular rival involves losses that 
cannot be directly recouped in the given market, even were exit to be 
induced. Moreover, viability of this predatory strategy does not depend on 
being able to induce exit. Rather, all that is needed is that the predator 
usually be able to drive the rival’s return from entry below that available 
elsewhere. 

Examples consistent with the sort of analysis we will develop are not hard 
to find. Government studies in the U.S. and the U.K. in the early part of the 
century identified many instances of predatory pricing against new entrants 
in the ocean shipping industry through the use of “fighting ships,” and the 
U.S. Department of Justice [ 181 has documented more recent episodes in this 
industry which it views as predatory (see also Yamey [ 191). Although it is 
difficult to determine if any of this price cutting was done with a view to 
deterring future entrants, one might expect that firms considering entering an 
industry with a century-long history of aggressive responses to entry would 
at least entertain the idea that they might meet a similar response. More 
directly, Brock’s discussion [2] of IBM’s pricing and product strategies 
against the “plug compatible” manufacturers (who were marketing peripheral 
equipment for use with IBM central processing units) suggests that IBM was 
concerned that failure to respond aggressively would encourage further entry. 
Finally, the fierce price wars that erupted as Proctor and Gamble introduced 
its Folger’s brand of coffee into local markets in the Eastern U.S. in 
competition with Maxwell House may well have been central in P & G’s 

’ This latter argument seems to suggest the possibility of deterring entry by holding current 
prices down. For a discussion of some of the problems with this notion of limit pricing, see 

1131. 
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decisions not to continue expansion of its distribution area and, in particular, 
not to enter the New York City market.’ 

Of course, it has long been recognized in the literature on industrial 
organization that the response that entrants expect from incumbent firms 
would be a major factor in determining the attractiveness of entry, and much 
of the traditional literature on entry deterrence effectively hinges on the 
threat of predation (see, e.g., Dixit [3] or Spence [ 171). Most models 
involving such threats are, however, subject to a telling, fundamental 
criticism. One should expect that the threat of predation will be effective in 
preventing entry only if entrants find the threat credible. But in these models, 
which involve a single entrant, if the entrant were to call the incumbent’s 
bluff by entering despite the threat, the incumbent would not be willing to 
prey, since sharing the market would typically be more the profitable course. 
In contrast, the strategy of predation in our model does not involve threats 
which would not rationally be carried out, since the immediate losses 
incurred in predation are offset by the gains from a reduced threat of further 
entry that building a predatory reputation yields. 

Thus, in our framework, a multiplicity of potential entrants plays a key 
role in rationalizing a predatory strategy. If, in fact, the established firm were 
to face a countable infinity of threats of entry, all of which may be poten- 
tially carried out, then it is trivial to identify an equilibrium which involves a 
credible threat of predation, as we demonstrate in Appendix A. (We also 
show there that there are numerous other equilibria in this framework.) If, 
however, there are only a finite number of potential entrants, the issue is 
more complicated. This point has been made by Selten [ 161. 

Selten considers a model which may be interpreted in terms of a firm 
which operates in N identical markets (a chain store). Each market has one 
potential entrant. Sequentially, the entrants must individually decide whether 
to enter the corresponding markets. If entry does not take place in market n 
(at stage n), the incumbent enjoys its monopoly position in that market 
without further threat. This contributes P”’ to its overall payoff. If entry 
occurs at stage it, the incumbent must decide whether to prey on the entrant 
(yielding n’) or to share the market (yielding n’). We assume 
IZ“’ > ZZc > 17’: predation is costly. In any event, the next entrant must then 
make its decision, knowing the history of play up through the preceding 
stage. Assume that the payoff to any entrant from meeting predation is 
strictly less than that from staying out, which, in turn, is less than the payoff 
from entry if no predation occurs. 

Selten suggests, and it does seem intuitively appealing, that in early rounds 
of this game the incumbent would adopt the costly predatory action in order 

* In Section 4 of their companion paper, Kreps and Wilson present a model which predicts 
behavior that closely approximates that in the Folgers-Maxwell House competition in several 
important aspects. 
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to persuade later entrants that they should best stay out, and that only near 
the end of the game would it be willing to share a market. Yet Selten also 
points out that this strategy cannot be consistent with the natural solution 
concept (that of perfect equilibrium) to employ in such situations. 

The argument is the following. Consider the last entrant. It knows that if it 
enters and meets predation, it would have been better off to stay out. But it 
also knows that, if faced by actual entry, the established firm is strictly better 
off if it behaves nonaggressively. Thus, assuming that both firms will always 
act in their own best’ interests, entry will occur in the last market to be 
threatened and will meet a nonaggressive response. Moreover, this will be the 
result, no matter what has been the history of play to this point. 

Now consider the second-last market to be threatened. If entry were to 
occur there and if the chain store could deter entry in the last market by 
adopting predatory practices, it might well adopt such measures. However, 
as just shown, the outcome in the last market is completely determined, 
independent of the outcome in the second-last market. Thus, if entry occurs, 
the chain store will share the second-last market peacefully, and, thus, too, 
entry will occur in this market. 

The induction is inexorable and the conclusion clear: in equilibrium, 
predation will never be practiced. Moreover, even if (for whatever reason) 
the chain store were observed to have preyed repeatedly against every 
previous entrant, the logic still will lead the next entrant to anticipate not 
that past behavior will be repeated but rather that it entry will meet a 
nonaggressive response. Repeated observations of behavior which, a priori, 
the entrant expected never to see cannot and do not shake its absolute 
confidence in its predictions of future behavior. 

The key factor driving this conclusion is that it is common knowledge (see 
Aumann [I], Milgrom ( 121) that accomodation is the best reponse to entry 
and that entry is the best response to accommodation. This common 
kwowledge, in turn, arises from the situation represented as a game of 
complete and perfect information in which all the firms are fully informed 
about the structure of the tree describing the game being played, about the 
payoffs accruing to all players, and about the others’ past acts. As soon as 
the complete information assumption on the game is relaxed, so that the 
common knowledge condition no longer obtains, the logic of the backward 
induction breaks down. (This point is illustrated in Appendix B.) The 
possibility of actions taken in the past being a useful guide to future behavior 
in similar situations now opens up, and with this, reputations3 can come into 

3 Most generally, a player’s reputation in this context would be the beliefs that other 
players hold about his unknown characteristics and on the basis of which they predict his 
behavior. These beliefs would depend on their initial beliefs and on their observations of the 
player’s past behavior. In the model we develop here, a simple sufficient statistic for these 
beliefs will be identified as the firm’s reputation. 
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play. Further, once the lack of complete information gives rise to reputation 
possibilities, the players’ equilibrium behavior will adjust markedly. The 
resultant equilibrium is then radically different than with complete infor- 
mation, for it has exactly the qualitative properties of Selten’s intuitive 
solution. Practicing predation now gives one a reputation as a predator 
which is valuable in deterring entry. Thus, if entry occurs at an early stage, it 
will meet a predatory response, because any other response encourages 
further entry. Recognizing this, potential entrants at these early stages will 
enter only if the market is so lucrative that they are willing to face certain 
predation. Only as the horizon draws near and the number of markets which 
may still be entered declines will the firm be willing to share a market. 

In the following sections we present our analysis of a version of Selten’s 
model of multiple markets with sequential entry possibilities. In contrast to 
Selten, however, we allow that there is some doubt in the minds of the 
potential entrants concerning the established firm’s options, motivations and 
behavior. We compute an equilibrium in this context which involves 
predation even by firms which find such a strategy to be costly in the short 
run, and we show that this equilibrium is the unique one involving sequential 
rationality by all players. We also investigate some of the major comparative 
statics properties of this model. The chief of these relate the value of a 
reputation-and the costs one will be willing to incur to obtain it-positively 
to the frequency with which the reputation may be used, as measured by the 
length of the horizon and the inter-period discount factor. The final sections 
presents a summary and some suggestions regarding both the implications of 
this analysis for policy and the possibilities for developing other formal 
models involving reputations. 

2. THE MODEL 

As suggested in the previous section, incomplete, asymmetrically 
distributed information plays a central role in our analysis of predation and, 
in particular, in undoing the logic leading to Selten’s Chain Store Paradox. 
One obvious way to introduce the requisite informational asymmetry is to 
allow that the entrants do not know exactly the payoffs accruing to the 
established firm from an aggressive response to entry and that there is some 
positive probability that such a response is directly more profitable in any 
given stage than a response of peaceful coexistence. Kreps and Wilson [7] 
employ this approach, and we had also explored this avenue in earlier 
versions of this paper.4 

4 While their analysis and ours originated independently, we have since benefitted greatly 
from having access to their ideas. They have also developed significant extensions of the “one- 
sided” reputation models studied here. Their paper is highly recommended to the reader. 
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Here we adopt a different approach in which we assume that the 
established firm definitely finds predation to be directly less profitable than 
sharing a given market. However, we also allow that there is some arbitrarily 
small, but nonvanishing, element of doubt in the minds of the entrants about 
whether their model of the established firm’s options, motivation, and 
behavior is correct. In particular, our modeling allows that the entrants 
entertain some possibility that one or another simple behavioral rule guides 
the actions of the established firm. The nature of these rules is such that past 
behavior is repeated when similar circumstances arise. While yielding an 
equilibrium with exactly the same qualitative properties as that identified by 
Kreps and Wilson and by us in our earlier modeling, the present approach 
permits somewhat simpler arguments than we had needed before, it yields a 
strong uniqueness result, and it also appears to have some measure of 
applicability to a broad range of other problems. We will return to these 
issues of motivation, interpretation and justification after presenting the 
formal model. 

We consider a game with N + 1 players. Player 0 is the established firm, 
while player n, n = N,..., 1, is a potential entrant in market n, where N is the 
first market threatened and 1 is the last. Associated with each player i is a 
random variable ri which is uniformly distributed on [0, 11, independent of 
the other 7j. We refer to a realization ti of 7i as the “type” of player i, 
i = 0, l,..., N. As well, we have two strictly increasing, continuous functions, 
a, and p, where 

and 

a: [O,l]-+(-co,O) 

p: [O, 1) + (-co, 1). 

The function a will give the payoffs to firm 0 from preying at a particular 
stage as a function of its type, while /? gives the payoff to an entrant which 
decides to stay out, again as a function of its type. 

The N + 1 firms will play one of three possible games, each of which 
involves N repetitions of a particular stage game. (Only the established firm 
will know which of these actually obtains.) The first possibility is that the 
game is one where the nth stage is 
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The second possibility is that the game has as its nth stage 

(PREY) 

/ 
~ayo‘fs FIRM 0 o(f,) 

FIRM ” 0 

The third possibility is that the nth stage is 

(SHARE) 

/ 
Payoffs FIRM 0 0 

FIRM n 1 

P(t”) 

The first pattern is initially assessed a probability of l/(1 + E + a), the 
second is given probability s/(1 + E + 6) > 0, and the third is given 
probability S/(1 + E + 6) > 0. We think of E and 6 as being small. Note that 
the realized value of t,, matters only when it is the first of these games that is 
being played. It is then convenient when referring to the situation where the 
second game is being played to abuse the notation by saying that t,, = w 
(w > 1) in this circumstance. Correspondingly, we will say that r0 = --w 
when it is the third game which is being played. 

In each case, we have normalized the stage game payoffs so that the profit 
accruing to the established firm in any market in which it does not 
experience entry is 1 while its profit when peacefully sharing the market is 0, 
and so that the profit to the entrant is 0 if it meets predation and 1 if its 
entry elicits a nonaggressive response. These normalizations in no way effect 
the results: they solely serve to ease computations. In particular, they do not 
mean that the entrant “breaks even” when preyed upon, nor do they imply 
that, for example, the profits of the entrant if it is not preyed upon are equal 
to the profits of the established firm when there is no entry. 

The specifications of the ranges of the a and p functions do have meaning 
in this context, however. That a is bounded above by 0, which is the profit 
payoff from preying, means that, other things being equal, any profit 
maximizing established firm would prefer to share a single market rather 
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than to prey. (We are thus building McGee’s arguments into our formal 
model.) Similarly, the upper bound of 1 on /3 means that the entrants’ outside 
opportunities are never better than sharing the market if entry will meet a 
passive response. The condition on a is used in our uniqueness argument, but 
may not be necessary; the condition on /I serves only to simplify the 
arguments and could definitely be relaxed. Allowing that the realized values 
of /3 may be negative recognizes the possibility that entry might occur even if 
predation were certain. This could, for example, capture the idea that 
predation would fail against a particular entrant. 

Our model is distinguished from Selten’s in two major respects, both of 
which involve aspects of incomplete information. First, we assume that each 
player has a continuum of possible types, with different payoffs for each 
type. This assumption serves primarily to generate a pure strategy 
equilibrium. Taking a and /3 to be constant functions would eliminate this 
difference between our model and Selten’s but would still generate a 
predatory equilibrium strategy for the established firm. Hence, the first 
distinction cannot account for the qualitatively different equilibrium behavior 
that we will find. The second difference is the positive E and 6 assumed in 
our model; in Selten’s model E = 6 = 0. We have introduced positive values 
of E and 6 to capture the ideal that entrants entertain the possibility that a 
predatory response in one period might be part of a general aggressive 
pattern, and a cooperative response might be part of a general cooperative 
pattern. It is important to recognize that, if E = 6 = 0, there is no compelling 
reason for an entrant to suspect that any observed behavioral pattern might 
continue: past behavior, in that case, is utterly irrelevant in forecasting future 
behavior. It is precisely that irrelevance that leads to and is the heart of 
Selten’s paradox. We shall see later that even as E and 6 approach zero, the 
potential entrants’ strategies do not approach those specified by Selten: As a, 
6 approach zero, the probability that predation deters entry can be bounded 
away from zero. However, the probability that predation actually occurs 
does converge to zero. 

We assume that 

-P(l -P-‘W a(1)> 1 -p(l -p-‘(q) -a, 

where p E (0, 1) is the discount factor used by firm 0. This condition turns 
out to be necessary for any reputation building to occur. While the basis for 
this claim must remain somewhat opaque for now, it will be shown that the 
right-hand side of the inequality represents the critical value of a(&) such 
that a firm of type t, is just indifferent about preying when the horizon is 
infinite and a single act of predation convinces the entrants that predation is 
certain in every future period. We also assume that /3(l) > 0. Otherwise, 
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there is no possibility of deterring entry, since being preyed upon is always 
better than the alternative opportunity involved in not entering. 

It is worth noting in this context that the assumption that the ri are 
uniform random variables on [0, l] in fact imljoses no restriction on the 
model. This is because a- ’ and p-i are the cumulative distributions of the 
random payoffs.’ Further, although our assumptions that a and p are 
increasing functions means that there are no mass points in these 
distributions, this assumption on a is for convenience only. The strict 
monotonicity of /I does assure some useful continuity in the optimal 
responses, but this too can be relaxed at the cost of complicating the 
equilibrium (see [7, Remark A]). 

Initially, the structure of the game is common knowledge. This includes 
the values of 6 and E, the a and p functions, and the distributions of the 
random variables 7i which determine the types. As well, it is common 
knowledge that only player i knows the value of si and that only player 0 
knows which of the three repeated stage games is being played. At each 
point in the game, each firm knows the history of the moves taken to that 
point by it and the other firms, but firm O’s payoffs in previous rounds are 
not observable by the other firms. Finally, it is also common knowledge that 
firm O’s payoff from the whole game is the present value of its profits at each 
stage, calculated with the discount factor p. 

This framework corresponds to Harsanyi’s treatment of games of incom- 
plete information played by Bayesian players [5]. The distributions a -’ and 
/I-’ reflect the various firms’ beliefs about each other’s payoffs, and the E 
and 6 reflect the doubts that the entrants have about whether their modeling 
of the established firm via the first repeated game is correct. Since the 
players are not sure about either the form of the tree describing the game 
they are playing (i.e., whether t,, is +w, --o or in [0, 11) or the payoffs 
accruing to various strategies (since the realized values of a and /I are not 
public information), the situation is a game of incomplete information. 
Harsanyi’s method for solving such games involves introducing a new game 
with complete but imperfect information, i.e., one in which the players all 
know the full game tree and all the payoffs but are not fully informed about 
the previous moves of the other players. In this game there is an additional 
player, Nature, which moves first. Nature plays a mixed strategy, selecting 
the actual types of the various players according to the probability 
distribution over types that describes the players’ prior beliefs about one 
another. This move by Nature in our framework thus determines which of 
the three possible games is being played and the actual, realized values of the 
payoffs to the N + 1 firms. However, only firm 0 is informed about the 

’ Throughout, for increasing functions J [O, l]-+ R, we employ the conventions that if 
x<f(O), thenf-‘(x)=0 and ifx>J(l), thenf-l(x)= 1. 
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outcome of Nature’s choice of the game tree and about the value of rO, and 
only firm n is informed about the realized value of r,. Thus, the game, while 
one of complete information, is also one with imperfect information, since a 
player’s information sets typically include several different decision nodes, 
with the node that actually obtains having been determined by an aspect of 
Nature’s move about which the firm is not informed. Harsanyi’s approach is 
then to identify an equilibrium of this game with coinplete, imperfect infor- 
mation as the equilibrium of the original game of incomplete information. 

In any game, a pure strategy for a player identifies an action to take in 
each information set. Here, a player’s information sets are differentiated in 
part by its type. For example, given any stage n and any history of play by 
the firms up to that point, firm 0 still has a continuum of different infor- 
mation sets, one for each possible determination of its type through Nature’s 
move. Thus, if only for this formal reason, a strategy for any firm must be a 
function of its type and thus must specify what it would do if its type were, 
say, some value i, even when its true (realized) type is something different. 

This fact often seems to cause difficulties for those who have not 
previously dealt formally with games of incomplete information. One way to 
interpret the idea that a strategy must specify behavior for types that don’t 
actually exist is to regard a strategy for a particular player as a conjecture in 
the minds of the others about its behavior. Then the dependence of the 
strategy on the player’s type simply reflects the other players’ making 
allowances in forming these conjectures that the player’s behavior depends 
on its type, which is unknown to them. In our model, these conjectues by the 
entrants about firm l’s behavior are first about whether or not they have 
correctly modeled the established firm as choosing between predation and 
sharing, and secondly, if it does make such choices rather than reacting 
mechanistically, about the conditions under which it will prey. With this 
view, an equilibrium involves each player reacting optimally to its 
conjectures about the other’s behavior, and these conjectures being consistent 
with the choices actually made. 

Our solution of this game employs the concept of sequential equilibrium 
introduced by Kreps and Wilson [8]. This equilibrium notion requires that, 
at any decision node, the player take an action that maximizes its expected 
payoff, given its current beliefs and given that the others will henceforth 
follow the prescribed equilibrium strategies. These current beliefs (about, e.g., 
which node in an information set actually obtains) must be consistent with 
the player’s initial beliefs, with any information that it may have available 
(directly or by inference) and, whenever possible, with the hypothesis that 
play has evolved to this point under the equilibrium strategies. 

To define a sequential equilibrium formally, let H, denote the history of 
the moves taken by the various firms from stage N to, but not including, 
stage n. Let Hi denote the resulting history in stage n - 1 when predation 
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occurred in stage n, let H; indicate that sharing occurred, and let HE 
indicate that there was no entry. Let Zn denote the possible histories of play 
up to stage n. Then a strategy for firm 0 consists of N maps 

s,“:~~x{ {-w) U [0, l] U {w}} -+ {Prey, Share}, 

n = N,..., 1, where si(., o) = Prey and sE(., -w) = Share. A strategy for 
entrant n is a map r”:Znx[O, l] -+ {Enter, Stay Out}. Then a sequential 
equilibrium is a strategy for each firm such that: 

(1) for each IZ = l,..., N, each HE 2, and each t, E [0, 11, 

r” (H, tn) = Enter if [l -P,W)I > PM, 
= Stay Out otherwise; 

(2) for each 12 = l,..., N, each H E Zn and each t, E [0, 11, 

si(H, t,,) = Prey if a(r,,)+~~~~i(t,-,,H~) >~~+i(t,,,H-), 

= Share otherwise, 

where the value function p is defined recursively, given F0 = 0, by 

~~(~o,H)=qn(H)max[p~n-,(~o,H-),a(~o) +P~-&,,H+)I 
+ (1 -q,,W))[l +~f?-&,H~)l; 

and 

(3) for all n and all HE 4 

p,(H) = Prob{si(H, ro) = prey IH} 

and 

q,(H) = Prob{r”(H, t,J = enter lH}. 

In this definition, the pn and q,, which are interpreted as perceived 
probabilities of predation and of entry, respectively, represent the players’ 
conjectures, and condition (3) is the rational expectations consistency 
requirement. 6 

Sequential equilibria are always Nash. Moreover, Kreps and Wilson have 
shown [B] that “for ‘almost all’ games [with finite strategy spaces], the 

6 Note that the conditional expectations in (3) may not be well defined if H is a history of 
play that occurs with probability zero under the specified strategies. In this case there is some 
latitude possible in specifying p,(H) and q,(H), although not any arbitrary specification will 
do. See [ 7 and 131 for further discussion of this point in related contexts. 
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perfect and sequential equilibria ‘nearly’ coincide.” Although the continuum 
of choices open here to Nature renders this result formally inapplicable to 
our model, the sequential equilibrium still clearly captures the basic idea 
behind perfectness. An advantage of the Kreps-Wilson equilibrium 
formulation over the perfectness approach is that it greatly eases the problem 
of computing and verifying that particular strategies constitute an 
equilibrium, since it allows us to use the methods of dynamic programming 
to analyze the players’ decisions. To apply the methods of dynamic 
programming, it is necessary to define one or more state variables that 
summarize some of what the players know about the current position of the 
game. In the original Kreps-Wilson formulation, the beliefs of each player 
function as his personal state variable. In our model, the firm’s reputation, 
which will be defined by a statistic that summarizes the history of play, will 
serve as a state variable. 

3. EXISTENCE, UNIQUENESS AND PROPERTIES OF THE EQUILIBRIUM 

To begin analysis of this game, note that at stage 1 (the last market), firm 
0 must never prey as long as I, # w, since to do so lowers its payoff with no 
possible compensation. Thus, if it is known that t, # w, entry must occur at 
stage 1. But if firm 0 ever fails to prey, the entrants can all immediately infer 
that t, # w, (since t, = o automatically yields predation). Selten’s argument 
then applies, since it is common knowledge that firm 0 will not prey at stage 
1. Thus, once it has ever failed to prey, firm 0 cannot gain by preying at 
stage 2, or, for that matter, at any other stage, since to do so simply 
squanders profits (a is negative) and cannot influence future entry decisions. 
Thus, if firm 0 ever fails to prey, it is clear that it will never prey again in 
equilibrium. It is also then clear that entry will occur in every succeeding 
market, since ,8(t,) is less than the payoff from unopposed entry for all t,. 
Thus, in any sequential equilibrium, failure to prey against a particular 
entrant implies that the present value of the established firm’s future payoffs 
from this and all succeeding stages is zero. 

Now suppose that firm 0 has never failed to prey, but that entry has just 
occurred in market II. As just seen, failure to prey yields a value of zero to 
the established firm for the rest of the game. If, however, it adopts an alter- 
native strategy which involves preying at stage n, then, given the strategies of 
the remaining entrants, it faces some list of possible patterns of future 
entries, predatory episodes, and unentered markets. In expected present value 
terms, let E, P, and M represent, respectively, the count of future entries, 
current and future predatory acts, and unshared markets resulting from the 
alternative strategy. Then the expected present value of future payoffs from 
following this strategy of predation is equal to Pa(to) + M, given our 

642/21/2-4 
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normalizations. Since P > 1, this expression is increasing in t,, the value of 
rO. Thus, if it pays firm 0 to prey at stage n when r0 = t (i.e., Pa(t) + M > 0), 
it also pays when t0 = t’ > t. In fact, then, the maximized value of future 
payoffs over all possible strategies is also increasing in t,, since it is the 
value of the maximum of increasing functions (including the constant 
function 0). 

These points can be effectively illustrated graphically. The axes in 
Figure 1 are M and P, as defined above. Given the succeeding entrants’ 
strategies, a particular choice of strategy at stage n by firm 0 results in a 
particular point in (P, M)-space. The convex hull of the resulting points is 
graphed. Note that P + M < 12, and that the origin is always available. Firm 
O’s preferences over this space are given by the linear indifference curves 
corresponding to Pa(t,,) + M = C. Payoffs are increasing as we increase M 
or decrease P, and the slope of any particular type’s indifference curves is 
-a(tJ > 0. Thus, if t, > tb, then the t, indifference curves are flatter than 
those for t;. It then is seen that the optimal P is at least weakly increasing in 
t,, and that if a given strategy yields a positive payoff for a particular value 
of t,, it yields a positive payoff for all higher values of t,. 

Thus, in searching for an equilibrium, we can limit our attention to pure 
strategies for firm 0 which call for predation at a particular stage with a 
given history of play if and only if the value of r,, exceeds some critical 
value, where this value is 1 if the history to that point involves any failure to 
prey. (Clearly, for r0 = ( w  /, there is nothing to specify. The reason we can 
restrict ourselves to pure strategies is that, with Pa(t,,) + M increasing in t,, 
at most one single type would ever be indifferent between the two possible 
actions at any stage.) 

Pa (t,) l M = C 

FIG. 1. Monotonicity of Payoffs in rO. 
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Thus, in equilibrium, if firm 0 has preyed whenever entry has occurred, 
the entrants can infer that either r,, = w  or the value of r,, exceeds the 
maximum of the critical values governing its past predatory decisions. Let x 
be this maximum, and call x the reputation of firm 0 with the given history 
of play. We make the special conventions that if the established firm has ever 
failed to prey, its reputation is x = --co, and that if no entry has previously 
occurred, x = - 1. 

We will now characterize an equilibrium for this game in which at stage II: 

(1) firm n’s decision depends only on the value of t, and on firm O’s 
current reputation X; 

(2) firm O’s decision (for the relevant case where I7,, # w) depends 
similarly only on the value of r0 and on x; 

(3) firm O’s new reputation on entering stage n - 1 depends only his 
reputation entering stage n and the actions taken there. 

This equilibrium involves N numbers, x, < x,,-~ < a.. <x1, with the 
property that, so long as it has never previously failed to prey, firm 0 with 
It0 ( # w  will prey in response to entry in market n if and only if t, > x,. 
Further, we show that x, = 1, that x, ( x,-, unless x,-~ = 0 or 1, that 
lim x, = max[O, a - ‘(a)], and that, if a(O) > a, there exists a finite k such 
that, for all II > k, x, = 0. Thus, in this equilibrium, the set of firms which 
will prey at stage n includes all those which will prey at any later stage when 
there are fewer markets to protect, and, for large ZV, any firm for which 
a(tO) > a will prey ‘in the early rounds, regardless of the immediate cost. We 
also show how to compute the x, values, demonstrate that this is the unique 
sequential equilibrium, and obtain some comparative statics results. 

Since the entrants are to be looking only at their own types and firm O’s 
reputation, and since the revision of the reputation is to depend only on its 
current value and current actions, the expected present value to firm 0, when 
entering stage n, of playing optimally in this and all later stage depends only 
on the value t of r0 and on its current reputation x. Let V,(t, x) denote this 
value, and recall that, as argued above, V, is increasing in t as the supremum 
of increasing functions. We will describe recursively a set of strategies based 
on these V, functions, then verify that they do in fact constitute the unique 
sequential equilibrium. 

Step 0. Initialization. Let &(t, x) = 0 for all t and x. This is just an 
initialization based on a “dummy” stage 0. We also initialize by setting firm 
O’s reputation entering stage N at - 1. 

Step 1. Reputation Revision at Stage n. Suppose firm O’s reputation 
entering stage n is x + ---co. Then its reputation on entering stage n - 1 is 
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Outcome in Market n Reputation Entering Market n - 1 

No entry 
Sharing 
Predation 

where “V” is the max operator and 

X 

-co 
x v x, 

x, = inf{x E [0, l] ] t > x implies a(t) +pV,-,(t, t) > 0). 

If x = -co at stage n, then firm O’s reputation at stage n - 1 is also --co, 
independent of the actions taken at stage it. 

Step 2. Firm O’s Actions at Stage n. With t,, = t E [0, 1 ] and current 
reputation x # - co, we specify the firm 0 will prey at stage n if and only if 

a(t) + PV”- l(h x v X”) > 0, 

i.e., if and only if the current return plus the value of continuing optimally 
exceeds zero, which, as argued above, is the value of the payoffs resulting 
from failure to prey (i.e., V,(t, -ao) = 0). If x = --co, we specify that the 
firm will share the market if entry occurs. 

This is clearly an optimal strategy for firm 0. 
Remark: Suppose now that firm 0 does follow this strategy. What can 

subsequent entrants correctly infer from seeing firm 0 prey at stage n? If the 
firm entered stage n with reputation x, then the subsequent entrants need 
consider only firm types t that exceed x. There are two possible cases. 

First, if x > x,, then x = x V x, . In this case, 

a(t) +PV,_,(t,x)~.(x)+pV,-,(x,x) > 0 

so long as t 2 x, since a and I’,, _ 1 are increasing in t. The second inequality 
here follows from the definition of x, and from x > x,. Thus, if the firm has 
already demonstrated that it is of type t > x,, it will surely prey at stage n. 

Second, if x < x, < 1, then x, = x V x, . Then the fact that a and V,, _, are 
increasing in t implies that 

4-4 +PV,-,(x,,x,)S4t) +pV,-,(t9x,) 

as x, 5 t. Now, if x, > 0, the continuity of VnP1 (to be verified shortly) 
implies that the left-hand side of the inequality is zero. Then the firm will in 
fact optimally prey if t > x,, will optimally share if t < x,, and is otherwise 
indifferent. If x, = 0, then the left-hand side is non-negative, t is 
automatically greater than x,, and predation is an optimal response, while if 
x, = 1, then a similar argument shows the optimality of sharing. Thus, we 
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have verified that future entrants could correctly forecast that firm 0 will 
prey in market n with reputation x # ---co if and only if r0 > x V x,. This 
justifies the evolution of reputations that we specified. 

Step 3. Firm n’s Actions at Stage n. In view of these computations, if 
x>x,, then entrant n will in equilibrium correctly regard a predatory 
response as certain. If x = -co, entry will be correctly anticipated to meet a 
nonaggressive response. In general, we have 

p,(x) = the probability in equilibrium that firm 0 will prey at 
stage n with reputation x, given that t,, > x 

= the probability assessed by entrant n that, given the 
reputation x, firm 0 will prey at stage n 

1 
E + [l - (XVX,)] 

&+(1-x) 
if x>O 

=lo if x=--co 

i 
18 + (1 - %)I 

[l +e+6] 
if x=-l. 

The entrant’s best response at n is then to enter if and only if 

P,(X) * 0 + (1 -P,(X)) * 1 >P(t,), 

i.e., if and only if 

t,<P-‘(l -p,(x))=q,(x). 

Then q,(x) is precisely the probability that n enters at stage n when firm O’s 
reputation is x. 

These strategies are clearly optimal responses to firm O’s strategy. 

Step 4. Transition from Stage n to Stage n + 1. With the initialization 
for I$, the preceding steps allow us to calculate V, as Vl(t, x) = 1 - q,(x). 
To complete the recursive cycle, we now have to specify how to move from 
stage n to n + 1. For x # --co, 

Vn+l(t, x> = qn+ ,(x) maxlo, a@> +pV,(t, x V 4Jl 
+ (1 - 4n+ l(X))(l + Put, x)>* 

The first term on the right-hand side is the probability of entry times the 
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maximum of the expected present value of the payoffs either from sharing the 
market and getting a reputation of --co (where we have used the previously 
established fact that V,(t, -co) = 0 or from preying now and then 
continuing optimally with the new reputation x V x,. The second is the 
probability of no entry times the value of having this market as a monopoly 
and then continuing optimally with one’s reputation unaffected. 

Note that it is now clear that V, is continuous if V,-, is continuous. Thus, 
since V, = 0 is continuous, all the V, are. 

It is also clear that V, is the optimal value function and, thus, that the 
strategies do constitute a sequential equilibrium. Each firm is maximizing, 
given its beliefs and its conjectures about the other firms’ strategies, the 
beliefs are consistent, and the conjectures are correct. 

Before we turn to characterizing this equilibrium, some further discussion 
of the determination of the x, values may be useful. In Fig. 2 we show 
[0, 1] x [0, l] with the diagonal. Think of the horizontal axis as being 
reputations and the vertical as the type of the established firm. Then we ask: 
if preying at stage n were to yield a reputation x, which types of firms would 
be willing to prey? The set of such firms is {t E [0, I] ( a(t) + 
pV,-,(t, x) > O}. Thus, the lowest type willing to prey is the inf over this set. 
Denote this inf as h,(x), and note that h, is continuous and monotone 
decreasing. Then x, is the unique fixed point of h,(x), i.e., the point where 
the graph of h, crosses the diagonal. To see this, note that if x # x,, then the 
set of firms willing to prey if it yields reputation x would not in fact justify 
the earning of that reputation. 

FIG. 2. Determination of x,. 
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We now seek to characterize the equilibrium. In so doing, the following 
function will be useful. Define g: R2 + R by 

where qi(1) is the probability of entry against the “strongest” type of 
established firm in the last period or, equivalently, the probability of entry in 
any round against certain predation, i.e., ql(l) =/?-i(O). Observe that 
V,+ ,(t, 1) = g(t, V,(t, 1)) and for all t, g is increasing in u and 

so that g(t, .) is a contraction map. Let z?(t) be the unique fixed point for 
each C. Then one can verify that 

i?(t) = 1 -s,(l) 
1 --P(l -41(O) 

= 1 - q,(l)(l - a(t)> 
1-P 

if t <x, 

if t > x, 

where 

x=a-1 
( 

-P(l -41(l)) 
1 --P(l -4,(l)) = 1 a-‘(a). 

This fixed point will provide a bound on V,,(t, .). 
Note, too, that the relationship a(1) > a which was assumed earlier is 

simply equivalent to x < 1. (At this point, one can straightforwardly verify 
the claims and interpretations made in connection with this assumption.) 
Further, since g is an increasing contraction map, we have the following 
result. 

LEMMA. If u < g(t), fhen u < g(t, u) < G(f). 

ProoJ Let u < r?(t). Then 

g(t, 0) < s(4 W>) = W). 

so u < g(t, u). Q.E.D. 



298 MILGROM AND ROBERTS 

Note that Vo(t, 1) = 0 < C(t) (with strict inequality at least for x < t) and 
that V ,,,+ l(t, 1) = g(t, V,(t, 1)). Thus, in particular, we have V,,(t, 1) < V(t) 
for all m. 

PROPOSITION 1. For any n, x ,, + , < x, , with strict inequality if x, # 0 or 
1. Further x* = lim n-co x, = max[O, x]. 

The proof of this result is given in Appendix C. 
Proposition 1 establishes the key point that any firm (defined in terms of 

the costs it incurs in preying) which is willing to prey when II markets are 
still threatened by actual or potential entry will also prey when there are a 
greater number threatened. It further gives the asymptotic properties of the 
x,. If x < 0, so that x* = 0, then the convergence to x* is necessarily in 
finite time. Thus, for all n sufficiently large, the established firm will prey for 
sure unless tO = ---co. If x > 0, then the convergence is only asymptotic: 
x, > x for all n. Of course, for large enough values of n, the differences 
between x, and x, between VJt, x) and z?(t), and between p,(x) and unity are 
arbitrarily small. 

Note that none of these asymptotic properties depend on the particular 
values of E > 0 and 6 > 0. 

In terms of Figure 2, the behavior of the h, functions as n varies gives the 
evolution of the x, values. If a( 1) is sufficiently negative, no firm would find 
predation attractive if n is small, and the corresponding h, functions are 
identically equal to 1. Eventually, however, acquiring a reputation of 1 (or 
close to it) by a single act of predation will become attractive for firms with 
high enough a(t,) values, since such a reputation reduces the threat of entry 
to (essentially) p-‘(O). Thus, at least near x = 1, h,,(x) lies below x, and x, 
becomes strictly less than 1. The correspondence between higher values of II 
and lower values of x, then is a matter of h, (at least near the diagonal) 
being above h, + , . Finally, all the h, converge in n to a constant function at 
x* = [0 V x], indicating that any type above x* would be willing to prey to 
get such a reputation. 

The equilibrium evolution of the game thus becomes clear. For large n, if 
x < 0, then once firm 0 has preyed and thereby revealed that it is not 
irrevocably committeed to sharing (5, # -w), entrants correctly regard 
predation as certain. Thus, the only entrants which will attempt entry for 
large n after one predatory episode are those whose outside alternatives are 
so poor, relative to the profits available by entry, that they are willing to face 
certain predation. The probability of entry is then p-‘(O), which may be 
zero. If x > 0, then a second act of predation is not absolutely certain (since 
X IIt1 > x, > x for all n), but it is close to being so when n is large. Conse- 
quently, the probability of entry is close to p-‘(O). In either case, the 
established firm sees predation at an early stage as leading to a long string of 
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monopoly returns, possibly interrupted by occasional predatory episodes. If 
its payoff while preying exceeds Q = a(x) = [-p( 1 -p- l(O))]/ [ 1 - p( 1 - 
P-‘(O)>], it P re ers f this to the continuation value of zero which results from 
failure to prey. If t < x, sharing is preferred. 

Before the first attempt to entry, if 6 > 0 it is still possible that the 
established firm is of the type that never preys. In this case, the probability 
of predation is strictly less than one, even when x < 0, and so one would 
expect (with probability strictly greater than /?- ‘(0)) to see a test of firm O’s 
fortitude by an entrant with a relatively low value of r,, and thus low oppor- 
tunity costs in entering. If this entry meets predation, then the firm’s 
reputation immediately jumps to x > x*, and the game proceeds as described 
above. 

As the number of markets remaining threatened decreases over time and 
the horizon approaches, x, increases. This begins immediately if x > 0, and 
at some finite date if x < 0. Consequently, the conditional probability that 
t0 > x,, given the current reputation x, and thus the probability of predation 
will start to decrease. If at some stage this probability of predation is 
sufficiently low relative to P(t,), entry will occur. If t < x,, entry will meet a 
nonaggressive response. The possibility that t0 = w is then eliminated, it thus 
becomes certain that predation will not occur in market 1, Selten’s logic 
takes over, and unopposed entry occurs in all remaining markets. If t > x,, 
predation occurs. The established firm’s reputation now rises to x,, the 
probability of predation at stage n - 1 now is p,-,(x,) > p,-,(x), the 
attractiveness of further entry is reduced from what it would have been if the 
value of r,, were only known to exceed x rather than x,, and the probability 
of entry in future rounds correspondingly falls. 

We will now demonstrate that this is the unique sequential equilibrium. 
We have already observed that, in any sequential equilibrium, if the 

established firm ever fails to prey, then there must be entry and sharing at 
every later stage. Thus, it suffices to consider only what happens when there 
has been no sharing. We have also observed that at any stage n with any 
history of play to that point, firm 0 with 1 r0 j # o will prey if and only if r0 
exceeds some critical value. Thus, at any sequential equilibrium all that can 
be inferred from a given history involving no sharing is that r0 = w or 
r0 E (x, 1 ] for some x. As well, we have also observed that we need consider 
only pure strategies. 

We now establish inductively that any sequential equilibrium must agree 
with the one we have described earlier at all stages m < n. The induction is 
made on n, and the case n = 0 is immediate. Fix any sequential equilibrium 
and suppose that the result holds for n = k. Then the value of entering stage 
k with r0 = I and reputation x is Vk(t, x). Now consider firm 0 in stage k + 1, 
where the history is H and the corresponding reputation is X. Let x >X 
denote the reputation that 0 would have at this equilibrium if entry and 
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predation occurred at stage k + 1. Then firm 0 of type r0 = t would choose 
to prey or not according as 

The reputation x must be consistent with O’s actual strategy at equilibrium, 
so we must have for t > 2 that 

a(t) + p&At, X) $0 as t ix. 

Using the monotonicity of V,, it is straightforward to check that the unique 
x > X for which this holds is x = X V xk. Hence, the conditional probability 
that entry will meet predation at stage k + 1 given the history H and 

zr;a:;n-; i;;;; ,,$.(Th e unique best response to this for firm k + 1 is to 

r/c+ 1) <P/c+ I(-% and this completes the induction. 
Notice that the fact that strategies depend on history only through 
reputations has been derived, not assumed. What the induction establishes is 
that if history affects play only through the reputation for stages m < k, then 
the same is true at stage k + 1. Since this is trivially true for k = 0, it is true 
for all k. 

The comparative statics properties of this equilibrium can be stated rather 
simply. Those on N have already been established: the values of the x, are, 
in fact, independent of N, so that the probabilities of entry and of predation 
in round n < N do not depend on N. Of course, we have already shown that 
x, converges monotonically down to [0 V x]. Increases in p, the discount 
factor, tend to lower the x,‘s. To see the sense behind this claim, note that 
against given strategies by the entrants, a higher value of p increases (in 
present value terms) the reward to preying. The costs that the established 
firm would be willing to incur in preying then increase, lowering the cut-off 
level of x at which predation occurs. However, such a lower value for x, will 
make entry less attractive, lowering qn(x) and increasing the benefit from 
predation at stage n + 1. Thus we have a snowballing effect, with everything 
working in the same direction. (A formal proof of all the comparative statics 
results we will claim here is given in Proposition 2.) 

Together these two results indicate that the value of a reputation-and the 
costs one would incur to achieve it-increase with the frequency with which 
it may profitably be used. Being able to use the reputation either more often 
at a given rate (increases in N) or with less delay between uses (increases in 
p) increases the incentives for building and maintaining a reputation. We will 
later suggest some interesting implications that would follow if this 
intuitively appealing result carries over to other models. 

The effects of changing the CL or /I functions in certain ways can also be 
identified. Adding any positive function to /I (while still maintaining 



PREDATION AND REPUTATION 301 

monotonicity and the upper bound of 1) yields a new function whose inverse, 
as the distribution of the outside opportunities, stochastically dominates the 
original distribution j..‘. This change lowers the probability of entry against 
any given reputation, given the established firm’s strategy. However, the 
lower values of the q,, tend to increase the value of preying (since they mean 
that predation is more likely to deter future entry), so again we have the 
snowballing effect we saw in the case of p. Similarly, an increase in a, which 
shifts a - ’ in the sense of stochastic dominance, also decreases the x, . Thus 
both an increase in the outside profit opportunities of the entrants (which 
lowers the attractiveness of entry) and a decrease in the costs of preying tend 
to lower the x,, thereby increasing the probability of predation with any 
given reputation and lowering the probability of entry. 

Finally, a higher value of E, the probability put on an automatically 
aggressive response, also works in the same way to lessen the x,,, and thus to 
increase the probability of predation with a given reputation and lower the 
probability of entry. 

All these properties are established formally by the following result, which 
is proven in Appendix D. 

PROPOSITION 2. Suppose p > P; a > E, /3 > j and E > E. Then x, <X,, 
for all n. 

In this modeling, the possibility that t,, = --w (with probability 8) was 
included largely for the sake of symmetry: either form of mechanistic 
behavior pattern is possible. The sole effect of 6 on the equilibrium is that it 
encourages an early test of firm 0 by some entrant. In particular, the x, 
values do not depend on the value of 6. In fact, as long as the probability 
that so = w is kept bounded from zero, we could also have allowed that the 
entrants also entertained all the theories about the established firm’s behavior 
which involve it preying against every entrant until there are exactly k 
markets left, k = 1, 2 ,..., and then never preying again. The equilibrium 
would not have been qualitatively changed. 

Finally, let us examine the behavior of the equilibrium as E + 0 and thus 
as we approach the original Selten model. Consider the case N = 2: the 
arguments can be extended for any N. By Proposition 2, xg is increasing as 
E + 0 and so has a limit xi. Then by the definition of xi, we have q:(x:) -+ 
max(O, 1 + a(x;)/p). Since a is bounded above by 0, we then have that the 
limit is strictly less than one. Further, if x! # 1, then we have lim qf(x;) = 
limp-’ [ 1 - E/(E + 1 - xg)] = 1, and this contradiction shows that xy = 1. 
Thus, as E + 0, the set of firms which will prey in equilibrium becomes null. 
However, since xi = 1, predation at stage 2 deters entry with probability 
equal to min[ 1, -a( 1)/p] > 0. Note that this a failure of upper hemicon- 
tinuity of the sequential and perfect equilibrium correspondence as we 
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change the information structure: the established firm’s equilibrium strategy 
converges to that identified by Selten, but the entrants’ strategies do not. 

Another way to express the striking importance of even very small positive 
values of E is to consider how the deterrent effect of a strategy of always 
preying depends on E. The easiest case to consider is when p(O) > 0. Suppose 
entry actually occurs at k dates mk,.., m, , where mi occurs after mi, r, and 
these entries are always met by predation. Then by examining the entrants’ 
strategies we find that for any two successive entry dates m, and VI,-, , 
1 --P(O) > 1 -S(z,,-,) > [E + 1 -x,,+,]/[E + 1 -x,,,!], where xmk+, = 0. 
This gives a set of k inequalities which when multiplied together 
lead to [l -(3(0)lk > [E + 1 -x~,]/[E + 1 -xmk+,] > s/(1 +E). Hence, 
k < ln[ e/( 1 + a)]/ln[ 1 - p(O)]. This provides an upper bound on the number 
of entries that can arise for any realizations of r, ,..., rN when entrants follow 
their equilibrium strategies and firm 0 adheres to an aggressive strategy. 
Note that the bound is independent of N and grows only logarithmically in E. 
Even tiny values of e can lead to moderate bounds on k. For example, if 
p(O) = 0.75, then for E = lop3 one obtains k < 4, for E = low6 one obtains 
k< 9, and for E = 10d9, k < 14. Thus, tiny elements of uncertainty can 
produce a significant deterrence of entry. 

4, SUMMARY AND CONCLUSIONS 

We have demonstrated that the presence of informational asymmetries can 
lead a firm operating in several markets to adopt a predatory strategy 
against entrants, even though such behavior is irrational when viewed in the 
context of a single market in isolation and even though there are only a finite 
number of potential entrants. This same point is made in the one-sided uncer- 
tainty model in the accompanying paper by Kreps and Wilson [7]. We view 
this model and our work as complementary, in that they display two 
different ways in which the recognition of informational asymmetries can 
“resolve” the Chain-Store Paradox. This resolution comes about because the 
informational asymmetry gives the entrants reason to forecaset future actions 
on the basis of past behavior. This in turn gives the establishes firm reason 
to prey in order to build a reputation which leads future entrants to predict 
that they too are likely to meet predation. 

The particular asymmetry we have introduced involves the entrants being 
less than certain that they are correct in modeling the established firm as 
rationally choosing between predation and peaceful coexistence. Specifically, 
we allow that they entertain the possibility that an episode of predation- 
which ought never to occur in the complete information set-up-may be part 
of a general pattern of predatory behavior. The recognition of this possibility 
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then results in the marked change in the equilibrium behavior that we have 
demonstrated. 

There are numerous reasons why this element of uncertainty should exist. 
On the one hand, the entrants could be not completely sure about the game 
being played. For example, it might be that the established firm could 
actually be involved in some bigger game of which the one studied here is 
only a part and that the firm’s equilibrium strategy in this larger game calls 
for it to prey in these markets. A second possibility is that in the game 
actually being played, the established firm may be able to precommit itself to 
an aggressive course of action and may have done so. Other scenarios 
involve the entrants allowing that the firm is not behaving as a fully rational 
game theorist. 

For example, the fact that firms involve many individuals, each with his or 
her own preferences and information, suggests that the appropriate model of 
the firm would be one of group decision making, and there is no compelling 
reason for choices in such situations to correspond to the maximization of a 
single utility function. Alternatively, the firm may have well-defined utility 
function, but it may not calculate fully the equilibrium in the game being 
played. Instead, it may have some more or less arbitrary conjectures about 
how the entrants will behave in response to its actions, and its preying is the 
optimal behavior given these conjectures. In fact, Rosenthal [ 141 has argued 
that games of perfect information ought to be analyzed as if the players were 
decision theorists in this sense, rather than game theorists whose conjectures 
about others’ behavior must be correct. In this context, Rosenthal suggested 
that his approach could resolve the Chain-Store Paradox, and Macgregor [9] 
has verified this conjecture. Thus, for example, if the established firm 
believed that the entrants would simply forecast that past behavior would be 
repeated, it would be led to prey. 

In this regard, Scherer’s discussion ([15, pp. 338-3391 of predation as a 
deterrence strategy is of interest. He notes that if entrants perceive different 
markets as sufficiently similar and if “business managers extrapolate from 
past events rather than sizing up the probabilities in each new situation”, 
then predation may have a deterrent effect. He goes on to note that very little 
is known about the extent to which such extrapolation occurs. Our analysis 
show that even if everyone is fully rational and does “size up the 
probabilities in each new situation,” as long as there is some doubt about 
whether this is the case, predation can emerge. 

The implications of this analysis for antitrust policy are straightforward. 
In multiple market situations, predation can be a rational strategy which 
deters entry and thus supports monopoly. Thus, any tendency to discount the 
likelihood or significance of predation on the basis of its presumed 
irrationality should be checked when there are multiple markets which might 
reasonably be regarded by potential entrants as similar. (An interesting 
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paper by Easley et al. [4], in which firms can make their markets seem to be 
intrinsically unprofitable candidates for entry by predation, yields similar 
conclusions.) Firms serving several geographically distinct markets are only 
one case where the model and its conclusions might apply. Firms with broad 
product lines or those in which on-going technological change yields a 
pattern of new product introduction over time are others. In this context, it is 
worth noting explicitly that predation will only rarely need to be practiced. 
The credible threat of predation will deter all but the toughest entrants (those 
with low values of t,,), and so the occasions when the firm will be called 
upon to carry out its threat will be infrequent. 

Two factors in our model lead to the emergence of reputations: the infor- 
mational asymmetries and the repeated actions with the possibility of 
observing past behavior. These conditions will be necessary for reputation 
building to occur in general, and it would further seem that they are 
sufficient: in any situation where individuals are unsure about one another’s 
options or motivation and where they deal with each other repeatedly in 
related circumstances (or where past dealings with other people are obser- 
vable), we would expect to see reputations develop. A clear example of such 
a situation is in problems involving the choice of product quality. Other 
examples in economics arise in credit relationships, in labor negotiations and 
strikes, in implicit contract models, and in the provision of auditing services, 
bond ratings, job recommendations and the like. The reader can easily 
provide more examples. Moreover, applications outside the traditional 
bounds of economics are at least as numerous. We expect that the methods 
of this paper can be applied in each of these contexts to yield important 
insights on the nature of observed behavior. We also would expect that the 
main comparative statics result of this paper-that the value of a reputation 
and the extent of reputation building increase with the frequency of the 
opportunities for its use-will prove generally true. If so, this would provide 
insight on such issues as the costs of social mobility in terms of reducing the 
opportunities and incentives for building reputations for honest behavior, 
quality service, and the like. 

The particular way in which we have introduced the informational asym- 
metry in this paper is to assume that individuals ascribe some positive 
probability to there being some alternative theory which determines behavior. 
In some situations, there will be an alternative theory which is particularly 
natural. In others, however, many perturbations of the “basic” complete 
information model will exist, and the choice between them may appear 
arbitrary. This suggests the need for a notion of robustness for these alter- 
native theories. One such notion is that a theory would be robust if its 
presence led to behavior which did not refute the theory. We plan to explore 
such ideas in the context of developing reputation models of some of the 
phenomena discussed above. 
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APPENDIX A 

In this Appendix we examine an infinite horizon version of Selten’s chain- 
store model. As we demonstrate, one trivially establishes existence of an 
equilibrium where any attempted entry is met by predation, even with 
complete information. This equilibrium then resembles that in Section 2 for 
large N. However, in contrast with the finite horizon, incomplete information 
model, the set of equilibria in this model is large and contains many 
intuitively unappealing strategy combinations. 

Let Z7:, @ and fly denote the incumbent’s payoffs to predation, coex- 
istence and monopolization in a single market, and let the corresponding 
payoffs to any entrant be ZIT, ny and #. Given a discount factor p for the 
incumbent, and denoting the play at round n by h,, where h, = + 1 denotes 
predation, h, = 0 denotes no entry and h, = -1 denotes sharing, the 
incumbent’s payoff is 

where 1, is the indicator function for the event (set) A, i.e., lth,=a, is equal to 
one for those n such that h, = a and zero otherwise. 

We assume that the game is one of perfect information, so that all players 
know the structure of the game tree, the payoffs, and the actions taken all 
previous moves. In contrast to the set-up in the text, number markets forward 
in time: market II opens before market n + 1. Assume ZZ{ < ZIz < nr and 
zzy < n: < ny. 

We now claim that, if Zig + flf C;” p” > Z7: Cr p”, then the following 
strategies constitute a sequential equilibrium: 

Firm 0: if h, ,..., h “-, > 0 and entry occurs in market n, then 
prey. 
If h, = -1 for any k < n and entry occurs in market n, 
then share this market. 

Firm n: If h, ,..., h,- 1 > 0, do not enter. 
If h, = -1 for any k < n, enter 

So long as flp + flf CF p” > Z7: Cr p”, not only do these strategies have 
the mutual best-response property that makes them Nash equilibria, but also 
this property obtains for the appropriately truncated strategies starting from 
any node in the game tree, so in fact they yield a sequential equilibrium. 

However, as is again easily shown, the strategies of never preying for the 
established firm and all potential entrants always entering, regardless of the 
history, also constitute a perfect equilibrium. Moreover, if flf + nf CF p” > 
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ZZc( 1 + CF p”), then there are uncountably many pure-strategy perfect 
equilibria; indeed, there are uncountably many of the following form, 
parameterized by S. 

Firm 0: If conditions (a), (b) and (c) hold at stage n, then prey at 
n: 

(a) 420 for all k < n, k 6? S 

@I h,,<O for all k < n, k 12 S 

(c) II 6? s. 

Otherwise, do not prey at n. 

Firm n: If (a), (b), and (c) hold, stay out. Otherwise, enter. 

Among the sets S that make these strategies a perfect equilibrium are: 
S = (k 1 k > i} for any choice of i, and S = {k 1 k is divisible by i), for any 
sufficiently large integer i. In view of this multiplicity, perfect equilibrium 
lacks any effective predictive power in this infinite horizon model. 
Furthermore, predation would never be observed in the pure-strategy 
equilibria of this model, so it also fails to explain apparent observed 
behavior. 

For these reasons, and because we also believe that the finite horizon 
model has its own inherent interest, we concentrate on it in the text. 

APPENDIX B 

The following example illustrates our claim regarding the role of lack of 
common knowledge in generating predation. 

Specifically, we consider a situation with the established firm, 0, and two 
entrants, 1 and 2. There are three possible states of the world, a, b, and c, all 
of which are equally likely. In state u, the game at each stage is such that 
entry results automatically in predation. In states b and c, the stage game is 

FIRM 1 0 1 08 

We can think of state a as one where the established firm is a predator. 
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The firms differ in their information, which can be described by the 
following partitions: 

Firm 0: [{a}, {b, c}] 

Firm 1: [{a,b}, {c}] 

Firm 2: [{a}, {b}, {cl] 

Note that firm 2 has perfect information, and that in state c it is common 
knowledge between the two entrants and also between the established firm 
and entrant 2 (who is the first to threaten entry) that firm 0 is not a predator. 
Yet in equilibrium, firm 2 is credibly threatened by predation! To see this, 
one need only note that the following constitute a set of sequential 
equilibrium strategies: 

Firm 2: Stay out 

Firm 1: Enter in event {c}, or if 2 entered and 0 failed to prey. 
Otherwise, stay out. 

Firm 0: Prey if firm 2 enters. If firm 1 enters, prey in event {a }, 
and do not prey in {b, c}. 

What makes this work is that, when the actual state is b or c, firm 0 does not 
know whether 1 knows that it (0) is not a predator, and everyone knows this. 
Note that 0 must take the same act in events b and c, since it cannot 
distinguish them. Thus, it can prey against firm 2 either in both states or in 
neither. If it shares in both states, it gets an expected return of 0. That this 
will result when c is the actual state is clear. When b obtains, failure to prey 
against 2 allows 1 to infer that it will not meet predation, and so entry in the 
last market again follows. If firm 0 preys in both states, then it absorbs a 
cost of -0.2 against tirm 2. When c is the state, it still experiences entry, so 
its total payoff is -0.2. In state b, however, the act of predation prevents 1 
from inferring whether state a or b obtains. Entry in state a yields 1 a payoff 
of 0, entry in b yields it 1, and since it views the two as equally likely, it 
prefers to stay out and receive 0.8. Thus, from O’s point of view, predation 
yields equal chances of -0.2 + 1 and -0.2 + 0, for an expected return of 0.3. 
Since this exceeds the expected return of zero resulting from failure to prey, 
it preys. Given that 0 will prey no matter what the state, firm 2 is then 
deterred from entering. This is true even when (in state c) it and firm 0 both 
know that sharing is directly more profitable for 0, both know that both 
know this, both know that both know that both know this, ad infinitum. 

In [6], this type of modeling is used to explain observed behavior in the 
finitely repeated prisoners’ dilemma game. 

642/27/2-S 
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APPENDIX C 

In this Appendix we establish Proposition 1. The first part of Ihe argument 
involves a rolling induction on the following list of propositions. 

(PO) V,(t, x) is continuous in (t, x) and nondecreasing in t. 

(PI) V,(t, x) is nondecreasing in x. 

W) x,+1 <%I. 

(P3) For all u and all x<x,+,, 

1 +pV&, x) > max[O, a(u) + PV&, x,+ ,)I. 

Since we have already established (PO), we turn to proving (Pl)-(P3). 

Proof of (Pl)-(P3). We proceed by a “rolling induction” on n. The 
initialization for n = 0 is straightforward if we define x,, z 1. 

Now suppose (PI) to (P3) hold for all n < m, and let us check the case for 
n=m+l. 

(P 1): Rearranging the recursion for V, + 1 yields: 

V,, ,(f, x) = max(O, a(r) + pV,(t, x V x,+ A) 

+ (1 - 4m+ l(X))[(l +PVA xl) 
- ma@, 40 + pV,(h x V x,+ ,>>I. 

The max term, the (1 - q,,,+,(x)) t erm, and the bracketed term are all non- 
negative (by the inductive hypothesis (P3)) and non-decreasing in x (by the 
inductive hypothesis (Pl)). Thus, we have (P 1) for n = m + 1. 

fP2): By the just proven fact that (P 1) holds for n = m + 1, we have for 
all x that V, + 1 (x, x) < Vm+ ,(x, 1). Together with the observation following 
the lemma, this gives V,, ,(x, x) Q C(x). So, using the lemma and the fact 
that V,+l(x,+l,x,+,)=g(X,+l, Vm(x,+,,x,+l)), (which is seen to be just 
the defining recursion once we note that ql( 1) = p-‘(O) = q,,, + I(~,,,+ 1)), 

IfX,+l= 1, there is nothing to prove. If x,+ , < 1, then the right-hand side 
above is at least zero (by definition of x, + , and continuity of V,). Hence, by 
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the monotonicity and continuity of a and V,,, and by the definition of 
x ,,,+*, we have ~,,,+~<4,,+~. (As we argue in the main text, this inequality 
will turn out to be strict if x,+, > [0 V xl.) 

(P3): We now must show that (P3) holds for n = m + 1. The case where 
0 > a(t) + pV,+ r(t, x,+ 2) is seen immediately to follow from the 
nonnegativity of V,, ,(t, x). This is turn results from the availability of the 
strategy of always sharing, which yields a non-negative payoff. Thus we 
concentrate on the case 0 < a(t) + pV,+ I(t, x,+ 2). Using the recursive 
expression for Vm+ , , we then have 

1 +PV,+,(t,x)--a(t)--pV,+*(t,x,+,) 

= 1 +~{4m+l(X)max[O~a(0 +~Khx,+dl 

+ [l -S,+1(~)l[l +Pbz(~~~)lI 
- 40 -dqm+l(Xm+2 1 max[O, a(f) +PV,(~, x,, Al 
+ I1 -4m+&m+2)1[1 +PG(~9Tn+2)11 

=~[4nr+l(Xm+2)-9m+l(~)111 +-V,(t,x)-max[O,a(t)+pV,(t,x,+,) 

+A1 -s,+,(x,+2)l(PVm(frx)-PV,(t,x,+2)} + l-40. 

II 

By the induction hypothesis (P3), the first term in braces is nonnegative. 
Since x m +2 > x by hypothesis and since q, + , is decreasing in x (as is easily 
verified), we have -1 < qm+ ,(x,+~ ) - qm + ,(x) < 0. Since V, is increasing in 
x by the induction hypothesis and since x < x, + 2, the second term in braces 
is non-positive. Thus, replacing p[q,,,+ ,(x,,,+ 2) - q,,,+ ,(x)1 by -1 and 
~(1 -q,,,+,(~,,,+~)) by its upper bound, 1, we obtain, for x<x,+~, 

1 +PV,+,(t,x)--a(t)--V,+,(t,x,+2) 

2-11 +pV,(~,x)-max(O,a(t)+pV,(t,x,+,)lJ 

+ WA 4 -pV&, x,+2)l + 1 - 40 

= max[O, 44 + pV,(h x,+ Jl - [a(4 + @A~~ -s+2>ly 

which we must show to be non-negative. For this, it is suffkient that 

But this inequality follows from (Pl) and (P2), so we are done. 
Thus, in particular, x,+ 1 , <x,. We now establish the remaining ciaims 

made in the statement of the Proposition. 
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Since {xX} is a bounded, nonincreasing sequence, it has a limit x* > 0. If 
the firm ever preys (without having failed to do so before), it acquires a 
reputation x > x*. For any such x and any n, 

P,(X) = 
& + 1 - (x v X”) 

&+1-x 

2 PAX*) = 
& + 1 - (x* v XJ 

&+(1-x*) * 

But since x,-+x*, this last term converges to 1 as n + co. Thus, p,(.) 
converges uniformly for x > x* to 1 as n goes to infinity, and so q,,(x) = 
/I-‘( 1 -p,(x)) converges uniformly to ,8-‘(O) = q,(l). Predation is certain in 
the limit, and only those willing to be preyed upon will enter. 

Then, since 

K(t, x> = q&j max(0, a(t) + p V,- ,(t, x V x,)) 
+ (1 - q,(x)W + PK- ,(c xl> 

for p < 1 we must have (by standard results in discounted dynamic 
programming) 

lim V,(t, x) = V,(t, x) for x>x*, 
n+oo 

where VW(t, x) is the unique solution to 

V,(t, x) = ql(l) max[O, 40 +pV& x)1 
+ 11 -41(1)1[1 +PVm(flx)l 
= g(t, v,(t, x)). 

But, by definition, this solution is the fixed point, z?(t). Thus, in the limit, 
predation gives the firm a reputation x > x* and a continuation value z?(t). 
Then, the limiting condition guaranteeing that the firm will prey is a(&) + 
pC(t,,) > 0, i.e., t, > x. Thus, x* = lim x, = [0 V x]. 

Since we assumed x < 1, we have thus demonstrated that predation which 
is costly in the short run will still occur for n large enough. Reexamination 
of the argument establishing (P2) now in fact reveals that x, < x,-, unless 
X n-i is 0 or 1, since a(t) is strictly greater than V,(t, x) for all the relevant 
values of t. Q.E.D. 
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APPENDIX D 

This proof of Proposition 2 involves a rolling induction on n based on the 
following two statements. 

(P4) Vn, X,<f, 

(P5) vx <x,2 V,(x, x) > v,(x, x) > 0. 

ProoJ Notice that (PS) for n = k implies (P4) for n = k + 1. To see this, 
note that if k were such that xk+, > Xk+ r 2 0, then, using the induction 
hypothesis (P5), the monotonicity of a and Vk, and the fact that xk+ r > 0, 
we have 

- - 

which contradicts the definition of Xk+ r and the continuity of Ci and vk. 
To show (P5), note first that both (P4) and (P5) hold trivially for n = 0 

and that non-negativity was shown in the proof of Proposition 1. Suppose 
(P5) holds for n = k and (P4) holds for n = k + 1. Then, for x < xk+ r, 

Vk+l(X,X)=qk+*(X)‘O+(l -q/c+1@))(1 +Pv,(-Gx))Y 

v,+,(x~x)=4k+1w~ o+ (1 -qk+l(x))(l +Pv,(w))~ 

where the zero payoff in the first expression is because firm 0 will not prey if 

x<xk+,, and the second follows since x < xk+ r < z?~+, . For the claimed 
inequality, it now suffkes, given (P5) for n = k, to show that 

sk+,(x)<~k+l(x). But x~+~<~~+, and c<& implies I-%+,(X) <I%+~@), 
which in turn means that 

G+,(x)-P(l -Pk+lw)>P-v -P,+,(x)> 

a-‘(1 -Pk+l(x))-qqk+l(x)9 

and we are done. Q.E.D. 
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