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Often a bargainer can use some form of power—Ilegal, military, or political—to impose
a settlement. How does the “outside” option of being able to impose a settlement, albeit
at some cost, affect the bargaining? And, how does the probability that the bargaining will
break down vary with the distribution of power between the bargainers? These questions are
examined by adding the option of imposing a settlement to Rubinstein’s game of dividing
a pie. Each actor can accept an offer, make a counteroffer, or try to impose a solution.
Imposing a settlement is, however, costly and each bargainer has private information about
its cost.Journal of Economic Literaturelassification number: C72.© 1996 Academic Press,
Inc.

1. INTRODUCTION

Bargaining is ubiquitous. But the settings in which it takes place vary im
mensely. Bargaining is often presumed to occur in a situation of voluntary e
change. A buyer, for example, cannot be compelled to pay more than his or f
valuation of the good for sale. In situations of voluntary exchange, there will b
no bargaining unless the bargainers believe that there may be mutual gains fr
exchange. In many other contexts, however, bargaining takes place in the shac
of power. If a bargainer becomes sufficiently pessimistic about the prospects
reaching a mutually agreeable resolution, that bargainer can often use some f
of power—be it legal, military, or political—to try to impose a settlement.

In pretrial bargaining, for instance, a litigant can use the court to impose
settlementby letting the suit go to trial. In contractual disputes with a compulson
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arbitration clause, the parties can impose a settlement by forcing the dispute in
binding arbitration. In a two-party coalition-government in which the parties
are bargaining about the position the cabinet will take on an issue, each par
can impose a resolution by withdrawing from the government and forcing new
elections (Lupia and Strom, 1995). If an interest group becomes sufficiently
pessimistic about the outcome of legislative bargaining, then in 23 of the state
in the United States an interest group can use a popular initiative to try to secul
a more favorable outcome (Gerber, 1995). In international negotiations abot
revising the territorial status quo, a state can use military force to try to impose
new distribution of territory if that state becomes too doubtful about the prospect
of reaching a mutually acceptable resolution (Fearon, 1992). In the bargainin
between different ethnic groups about the rights each group will have under
new constitution, each group may resort to force to effect a resolution (Fearor
1993). In the bargaining between political parties during democratic transitions
the parties may turn to violence and take to the streets to secure a better outcol
(Houantchekon, 1994).

How does the shadow of power affect bargaining? How, in particular, do
changes in the distribution of power between the bargainers affect the probabilit
that the bargaining will end with one of the bargainers’ trying to impose a
resolution? This essay examines these questions by adding the option of forcir
a settlement to Rubinstein’s (1982) bargaining model. In Rubinstein’s game, tw
actors are bargaining about dividing a pie and alternate making offers until one c
them accepts the other’s offer. In the model developed below, each actor also h
the option of trying to impose a solution whenever that actor is deciding whethe
to accept an offer on the table or to make a counteroffer. If an actor does try t
impose a settlement, it wins the entire pie with probabitityhile the other actor
wins the pie with probability - p. In effect, p represents the distribution of
political power: the largep, the greater one actor’s expected payoff to trying to
impose a solution and the lower the other actor’s expected payoff. It is, howeve
costly to use power, and each actor has private information about its cost.

Two competing factors make the relation between the probability of break-
down and the distribution of power ambiguous. The weaker a bargainer, th
lower its expected payoff in the event of an imposed settlement and, conse
quently, the more likely that bargainer is to accept any given offer. This factor
suggests that bargaining is less likely to breakdown if the distribution of powel
is uneven so that one of the bargainers is weak. But the weaker one bargainer, t
more the other bargainer is likely to demand and these greater demands are mq
likely to be rejected. This second factor suggests that bargaining is less likel
to breakdown if there is an even distribution of power, because this distributior
will moderate both bargainer’'s demands. The net effect of these two factors i
unclear.

The factors affecting the probability of bargaining impasses are of genera
interest (see Crawford, 1982), and, especially, in the work on strikes, arbitratior
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pretrial bargaining, and the causes of war in international relations theory. Tl
latter two are of particular interest here. Priest and Klein (1984, p. 15) and Coot:
Marks, and Mnookin (1982) study nonstrategic pretrial bargaining models. Prie
and Klein find that clear-cut cases, i.e., cases in which the plaintiff is eithe
very likely to win or lose, are least likely to go to court. Cooter, Marks, and
Mnookin find that anything that increases one of the litigant’s expected valt
of going to trial makes settlement less likely. (The effects of a change in th
relative strength of the plaintiff’s case thus seems ambiguous; the stronger t
plaintiff's case, the higher the plaintiff’s expected payoff to going to court and th
lower the defendant’s expected payoff.) Reinganum and Wilde (1986), Nalebt
(1987), Schweizer (1989), and Spier (1992) study strategic models in whi
one of the parties has private information about the case. In Reinganum a
Wilde’s and Nalebuff's models, the defendant has private information about i
degree of liability and the plaintiff makes a single settlement offer which the
defendant either accepts or rejects. Excluding the possibility of nuisance su
by assuming that the plaintiff strictly prefers going to court if the defendan
rejects its demand, Reinganum and Wilde examine, among other things, h
different ways of allocating court costs affect the probability of trial. Nalebuff
allows for the possibility of nuisance suits and shows that higher litigation cos!
may increase or decrease the probability of settlement depending on whethe
“credibility” constraint is binding. Spier studies the pattern of settlement ove
time in a model in which the defendant still has private information about it
liability but the plaintiff can make multiple offers. Schweizer assumes that th
plaintiff and defendant have private information about the strength of their ca:
and the probability of winning in court. In this model, the defendant makes
single offer which the plaintiff either accepts or rejects by litigating the case
Schweizer uses this model to examine the effects of changes in the quality
litigant's information about the strength of the case and shows that the probabili
of litigation can increase if one of the parties receives more accurate priva
information. (See Cooter and Rubinfeld, 1989, and Kennan and Wilson, 199
for more extensive reviews of bargaining over legal disputes.)

The game analyzed here can be interpreted as a model of pretrial bargain
in which the litigants agree on the expected award if the case goes to coL
but each litigant has private information about its litigation costs which, unde
the American system, it will have to pay regardless of the verdict. The litigant
also discount the future, so the plaintiff, at least, is eager to settle the dispL
as soon as possible. In trying to reach a settlement, the parties alternate mak
offers until they agree on a settlement or until one of them becomes sufficient
pessimistic about the prospects of reaching an agreement that it goes to cou

Ininternational relations theory, the relation between the distribution of powe
and the probability that war will be used to try to impose a settlement has be:
the focus of a long debate. Morgenthau (1966) and the balance-of-power schi
more generally (Wright, 1965) argue that an even distribution is more stable, i.¢
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bargaining is less likely to break down in war if the probabilities that either state
will prevail are roughly equal. Blainey (1973), Organski and Kugler (1980), and
the preponderance-of-power school more generally argue thata preponderance
power is more stable. That is, bargaining is less likely to break down in war if one
orthe other of the bargainersis very likely to prevail in the event that military force
is used. (This assertion directly parallels Priest’'s and Klein's (1984, p. 15) clair
that clear-cut cases are less likely to go to court.) Empirical efforts to resolve
this debate have yielded conflicting results. Siverson and Tennefoss (1984) fir
an even distribution to be more stable. Moul (1988), however, finds the opposite
and Maoz (1983) finds no significant relation between the distribution of powel
and the probability that a dispute will end in war. (See Levy, 1989, for a review
of this debate as well as a survey of the empirical attempts to settle it.) Bueno ¢
Mesquita and Lalman (1992) and Fearon (1992) have studied this relationshi
formally. Bueno de Mesquita and Lalman do not allow for endogenous offers
Fearon studies a model in which one state can present the other with a take-it-c
leave-it demand in the form of a militafgit accompliwhich the other state can
either accept or go to war to overturn. Both of these analyses find the distributio
of power to be unrelated to the probability of war.

The game studied here can be interpreted as one in which two states a
bargaining about revising the territorial status quo. The states agree on the disti
bution of military power and, hence, on the division of territory expected to result
from war, but they have private information about their costs of using force, or,
more generally, about their willingness to use force. The states alternate makir
offers until they reach agreement or one of them becomes too pessimistic ar
tries to impose a settlement by force.

The game has a simple, unique equilibrium outcome. A player will be called
dissatisfied if it prefers an imposed settlement to what it would obtain in the bar
gaining game if the options of imposing a settlement were not present. Because
is costly to impose a settlement, at most only one bargainer can be dissatisfied.
equilibrium, the satisfied bargainer makes what is effectively its optimal take-it-
or-leave-it offer. The dissatisfied bargainer either accepts this offer or imposes
settlement. (If both bargainers are satisfied, the options of imposing a settleme
have no effect and the game is equivalent to a game in which these options a
not present.)

This simple equilibrium is used to trace the relation between the probability of
breakdown and the distribution of power. This probability is zero if the expectec
allocation of the “pie” resulting from an imposed settlement is the same ac
the Nash bargaining outcome of the underlying bargaining game in which the
options of imposing a settlement do not exist. In these circumstances, no or
expects to gain by imposing a settlement. If the bargainers are risk neutral
if the bargaining problem is symmetric in a sense described below, then th
probability of breakdown in nondecreasing in the disparity between the expecte
outcome of imposing a solution and the Nash bargaining solution; i.e., this
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probability is nondecreasing in the absolute value of the difference between the
two outcomes. If, however, the bargaining problem is sufficiently asymmetric
then the probability of breakdown may not be a monotonic function of thi
disparity.

Viewing these results in the context of pretrial bargaining, the plaintiff is the
potentially dissatisfied bargainer; only the plaintiff may have a positive expecte
payoff to going to court. Thus in the equilibrium of alternating-offer game an
alyzed here, the defendant makes its optimal take-it-or-leave-it offer which tt
plaintiff either accepts or rejects by going to court. The model also indicates th
if the plaintiff and defendant are risk neutral, as is generally assumed in mode
of pretrial bargaining, then the stronger the plaintiff's case, the more likely th
bargaining is to break down with the plaintiff’s taking the case to trial. More
precisely, the probability that a dispute will go to trial is nondecreasing in th
probability that the plaintiff will prevail.

In the context of international politics, the results derived below conflict witt
the claims of both the balance-of-power and preponderance-of-power schoc
In the former, the probability of war is smallest when both sides are equall
likely to prevail; in the latter, the probability of war is smallest when one stat
or the other is very likely to prevail. In the present model, the probability of wal
is smallest when the territorial distribution expected from fighting approximate
the status quo distribution of territory.

The present analysis focuses primarily on the relation between the distributi
of power and the probability that the bargaining will break down in an impose
settlement. This focus accounts for the specific way that the payoffs to the outsi
option are defined. In the model, the values of the bargainers’ outside options
uncorrelated, but the expected values of these options are inversely related. -
more powerful a bargainer, the higher the expected value of its outside opti
and the lower the expected value of the other bargainer’s. The characterizat
of the equilibria, however, does not depend on the precise specification of t
payoffs of the outside option. Indeed, the model can be seen somewhat m
generally as an infinite-horizon, alternating-offer game in which each bargain
has an outside option the exercise of which ends the game in a Pareto ineffici
outcome. The bargainers discount the future and have private information abc
the (uncorrelated) values of their outside options.

From this more general perspective, the fact that the game has a unique ec
librium outcome may seem surprising for two reasons. First, bargaining mode
in which an informed party can make offers generally have a multiplicity of
equilibria. Second, adding an outside option to bargaining models that ha
unigue equilibria often creates a multiplicity of equilibria (Fudenberg, Levine
and Tirole, 1987; Osborne and Rubinstein, 1990). The unique equilibrium in tk
present model is due to a kind of bargaining shutdown. Consider any informatic
set at which the potentially dissatisfied bargainer is deciding whether or not
accept an offer. Regardless of its belief at this information set, the dissatisfi
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bargainer will generally not reject an offer in order to make a counteroffer. It will
either accept the offer on the table or exercise its outside option. At the beginnin
of the game, therefore, the satisfied bargainer’s best response to this strategy
to make its optimal initial take-it-or-leave-it offer. A similar kind of bargaining
shutdown occurs in models in which the players have outside options, the value
of which are common knowledge, and pay a fixed per-period cost to bargainin
rather than discount the future (Fudenberg and Tirole, 1983, p. 246; Perry, 198
Fudenberg, Levine, and Tirole, 1985, pp. 87-89). This shutdown also appea
in models in which the players discount but also have to pay a known entry fe
before beginning to bargain (Fudenberg and Tirole, 1991, pp. 414, 429).

The rest of the paper is organized as follows: Section Il presents the mode
Section Il characterizes the dissatisfied bargainer’s behavioral strategy at ar
information setat whichitis considering an offer from the satisfied bargainer. The
equilibrium of the game in which the satisfied state makes the first offer follows
immediately from this characterization. Section IV characterizes the equilibriun
when the dissatisfied bargainer makes the first offer. This section also shows th
as long as the discount factor is close enough to one, then the probabilities of ¢
imposed settlement are approximately the same regardless of which bargain
makes the first offer. Section V uses the equilibrium to examine the relatior
between the distribution of power and the probability that the bargaining will
break down in an imposed settlement.

II. THE MODEL

There are two players, andD, and an initial status quo division of benefits.
Letb < 1 represent the total per-period flow of benefits that exists prior to any
agreement or to an imposed resolution and gkedb — q to beD’s andS's
respective status quo flows of benefits. The actors are bargaining about how
divide a total per-period flow of benefits equal to one. If, thereforequals
one, reaching an agreement will not increase the flow of total benefits. Th
bargainers, in other words, are already on the Pareto frontier and are negotiatir
about moving to a new location on the frontier.bf< 1, agreement brings
joint gains, and the players are bargaining about how to divide these gain:
(Analytically, it makes no difference if the bargainers are already on the Paret
frontier (o = 1), as would be the case of pretrial or territorial bargaining, or if
they are initially inside the Pareto frontdy & 1).)

The players alternate proposing divisions of the flow of benefits. Wheneve
an actor is considering whether to accept a proposal on the table or to reject
in order to make a counteroffer, it can also force the issue by trying to impose
settlement. The game ends as soon as the players agree on a division or one
them tries to impose a resolution.

To specify the players’ payoffs if they reach a mutually acceptable agreemen
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assume that they agree ®, y) at timet, where the first component iB’s
allocation. ThenD’s utility to having q from the zeroth to théth period and
havingx thereafter is the average payoff— §")Up (q) + §'Up(X), wheres is
the bargainers’ common discount factor &hd > 0 andUj < 0. Similarly,Ss
payoffis(1 — §")Us(b — q) + §'Us(y), whereUg > 0 andU¢ < 0.

To define the payoffs if the players fail to agree and one of them tries t
impose a settlement, suppose that someone forces the issue atTimaD is
assumed to win the entire flow of benefits with probabilitand to obtain no
benefits with probability - p. The use of power is also costlip and S pay
costsd ands, respectivelyD’s utility is therefore(1—§")Up (q) + 8 (pUp (1) +
(1— PUp(0) —d) = (1 - §HUp(q) + 8'(p — d), whereUp (1) andUp(0)
have been normalized to be one and zero, respectively. Simigslwtility is
(1-8NUs(b—q) +8'(L—p—9).

Each player has private information about its cost of imposing a settlemer
PlayerD believes thaS's costs or types are distributed over the intergaf],
wheres > 0 and the distribution functioRs(s) is assumed to have a monotone
hazard rateand a bounded and continuous density functfas) such that
fs(s) > 0 over(s, S). The smalless, the lower the cost t& of trying to impose
a settlement and, less formally, the “tougher” or more willBi to use force.
Analogously,S believes thaD'’s costs are distributed oved [d] according to
Fp(d), whered > 0 andFp(d) has a monotone hazard rate and a bounde
and continuous density functiofp (d) such thatfp(d) > 0 over(d, d). The
distributionsFp andFs are common knowledge.

Figure 1 shows the per-period flow of benefits and helps fix ideas. The stat
quo is Q. If the options of trying to impose a settlement were not present, th
game would simply be a complete-information Rubinstein (1982) gameRLet
denote the outcome of this underlying game. The bargainers rem@inuatil
they agree to a different allocation or until one of them forces a settlerfent.
is the outcome of an imposed settlement if the two toughest types] iaad
s, happen to be facing each other. The outcome of an imposed settlement
however, uncertain because of the bargainers’ private information about th
costs. Thus, the outcome of a forced resolution is distributed over a rectang
with F as its upper-right corner. As the distribution of power shifts in favdp pf
i.e., asthe probability thd will win the entire pie p, increases: slides upward
along the diagonal line in Fig. 1. As the distribution of power shifts agdinst
F slides downward. In terms of the figure, the problem of characterizing th
relation between the distribution of power and the probability of an impose
settlement reduces to seeing how this probability varie atides along the
diagonal.

Three preliminaries are needed before the game’s equilibria can be charac

! That is,d(F§(s)/(1 — Fs(s)))/ds > 0.
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FiGc. 1. The bargaining problem.

ized. First, “dissatisfied” player-types must be defined. Second, the equilibriun
of the complete-information version of the game must be described. Finally
the bargainers’ strategies and beliefs must be specified for the asymmetri
information game.

Consider the alternating-offer game betw&andSif the outside options of
imposing a settlement were absent. The alternating-offer game without outsid
options reduces to a complete-information Rubinstein (1982) game. A playel
type is “dissatisfied” if it strictly prefers an imposed settlement to accepting wha
would be offered to it in the underlying Rubinstein game. If a player-type is not
dissatisfied, then it is satisfied. A bargainer is “potentially dissatisfied” if one
its types is dissatisfied. Accordingli is potentially dissatisfied if the toughest
type of D, d, is dissatisfied, an& is potentially dissatisfied i is dissatisfied.
More precisely, in the unique subgame perfect equilibrium of the underlying
Rubinstein gameD demandg p(8) for itself andS offersrs(s) to D, where
rp(8) andrg(8) satisfy

Us(1—rp(9))

(1-8)Us(b —q) +38Us(1 —rs(8))
D
Up(rs()) = (1 —-8Up(q) +3Up(rp(d)).

The first equation ensures tHats indifferent between agreeing 's demand
now and toD’s agreeing toS's offer in the next period. Similarly, the second
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equation means th@lt is indifferent to agreeing t8's offer now and to obtaining

its demand in the next period. Given these demands and offers, the equilibrit
outcomes ar@p(8), 1—rp(8)) if D makesthe initial offeran@s(8), 1—rs(8))

if S makes the initial offer. These offers and outcomes do not deperd'on
or Ss type, and it will be convenient to refer to them as Rubinstein offer:
and outcomes. Accordingly, a typkis dissatisfied if its expected payoff to
imposing a settlement is strictly greater than its utility 8 Rubinstein offer,
i.e.,p—d > Up(rs(d)). Similarly,sis dissatisfiedif - p—s > Us(1—rp(8)).

Ifthe discountfactor is close enough to one, then at most only one player can
potentially dissatisfied. To see this, suppose that both bargainers are potenti
dissatisfied. Thep—d > Up(rs(8)) and 1- p—s > Us(1—rp(8)). Concavity
impliesUp(rs(8)) > rs(8) andUs(1 —rp(8)) > 1 — rp(8). Combining the
previous inequalities giversy(8) —rs(8) > d +s > 0. Butrp(8) — rs(d)
converges to zero asgoes to one because bath(s) andrs(8) converge to the
Nash bargaining solution. This contradiction implies that both bargainers cann
be potentially dissatisfied.

Without loss of generality, IdD denote the potentially dissatisfied bargainer if
there is one. Then the equilibria of two games must be characterized. In the fir
the potentially dissatisfied bargainer makes the initial offer, while the satisfie
bargainer makes the initial offer in the second. Cgi(§) and I's(§) denote
these two games respectively. (If neither bargainer is potentially dissatisfie
then neither bargainer can credibly threaten to impose a settlement rather tt
to accept the other’s Rubinstein offer. The game effectively degenerates ir
a complete-information Rubinstein game in which sabffer rs(8) and alld
demand p(8).)

The complete-information versiondif (§) andI's(8) have a simple solution.
Suppose thab is dissatisfied. Then in the unique subgame perfect equilibriun
S offers D the value ofD’s outside option.D offers S just enough to leave
S indifferent between accepting’s offer and countering it by offerind the
value of D’s outside option. These offers are always accepted in equilibriur
(See Osborne and Rubinstein, 1990, for a derivation of this equilibrium.)

To specify the strategies in the asymmetric-information gamé,lbe ann-
period history which is comprised of a series of offers and rejections and whic
ends with a rejection. Letl, be the set of alh,. Takehy, to be the historyh,
followed by a proposed division and lef, be the set of alh;,. Assuming for no-
tational convenience that the first offer occurs in the zeroth period Dheakes
offers in even-numbered periodslity (§) and S accepts, rejects, or imposes a
resolution. Similarly,S makes offers in odd-numbered periods. Accordingly, a
pure strategy for playdD in I'p (8) is a family of measurable functiosj}> ,
such that ifn is even,oj: H, x [d, d] — {(x,y): x +y < 1} where the first
component o&j (hy,, d) is the share of the total flow of benefiswill receive.

If nis odd,o]: H; x [d, d] — {Y, N, F}, whereY, N, andF respectively
denote accepting the offer, rejecting the offer in order to make a counteroffe
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and trying to impose a resolution. Pure strategiesSfor I'p () and forD and
Sin I's(8) are defined analogously.

To specify the players’ beliefs iivp (8), let Gp and Gs denote the set of
probability distributions overd, d] and [s, §], respectively. Letu? (d) for n
even angwl(s) for n odd denoteD’s andS's beliefs at the start of theth round
at which point the players are making an offer. Léf(d) for n odd andug(s)
for n even denotéD’s and Ss beliefs when deciding how to answer an offer.
Then,u}: H, — Gsfor n odd andu}: H, — Gsfor n even and similarly
for u2. A player’s beliefs will also be assumed to be unaffected by its decision
to reject an offer in order to make a counteroffef, = w3 for n odd and
n = u%H for n even. Beliefs are defined analogousiyigs).

A perfect Bayesian equilibrium (PBE) &f; (8) or I's(§) is a strategy profile
(op, os) which is sequentially rational and a system of beligfg , 11s) which
satisfies Bayes' rule whenever possible. That is, a player’s beliefs after receivin
an offer must be consistent with Bayes’ rule applied to that player’s beliefs jus
prior to the offer and the other player's behavioral strategy for making the offer.

[ll. THE EQUILIBRIA WHEN SMAKES THE INITIAL OFFER

The satisfied bargaine® makes the first offer ims(8). In equilibrium, S
makes its optimal take-it-or-leave-it offer given its prior beli€fs and subject
to the constraint that this offer is at least as large as its Rubinsteinrgff®r.

The potentially dissatisfied bargainBr either accepts this offer or imposes a
settlement.

Lemmas 1 and 2 are the keys to this result. Lemma 1 puts bounds on what tt
satisfied bargainer will offer or accept, starting at any information set at whict
this bargainer is making an offer. Importantly, these bounds hold inbgi)
andI'p(8). Lemma 2 uses these bounds to show that no type that prefers a
imposed settlement to accepti®s Rubinstein offerg(§) will ever reject an
offer in order to make a counteroffer. It will either accept the offer on the table
or impose a settlement.

The intuition underlying Lemma 1 is straightforward. Suppose St at
any information set in eithelrs(§) or I'p(§) at which it is making an offer to
D. Suppose further that is the toughest type th&might be facing; i.e.d’ is
the infimum of the support db's beliefs at this information set. Then the most
pessimistic beliefs tha® could have aboubD are thatS is facingd’ for sure.
Lemma 1 shows that newill never offer more or accept less than it would in
the complete-information game in whistfacesd’ for sure.

As outlined above, this complete-information game has a simple solution
If d’ is satisfied, then the outside options have no effect on the outceme.
will offer rs(8) and reject anything leaving it will less than-rp(8). If d" is
dissatisfieds offersd’ its certainty equivalent of imposing a settlement, which
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will be denoted byX(d"), ands rejects anything leaving it with less than the
present value of countering with's certainty equivalent. That iswould never
accept less than-1 z(8), wheres is indifferent between accepting-1z(§) now
and countering withd”’s certainty equivalent; i.ez(§) solvesUs(1 — z(8)) =

(1 —8)Us(b — q) + sUs(1 — X(d")). In sum,s will never offer more than
max{rs(d), X(d")} or accept less than mih — rp(8), 1 — z(8)}. Since these
bounds do not depend anthe satisfied bargainer, regardless of type, will nevet
offer more than mafxs(8), X(d")} or accept less than mih—rp(8), 1 — z(5)}.
More formally,

LEMMA 1. Consider any PBE df's(§) or I'p(§) and any information set at
which the satisfied bargainer is making an offeake d to be the toughest type
that S might be facing.e.,, d’ is the infimum of the support of S’s beliefs at this
information setThen S will never offer more thanax{rs(8), X(d")}. Nor will
S ever accept any offer of less tham{1 —rp (), 1 — z(8)}, whereX(d") is the
certainty equivalent to ‘dfor imposing a settlemente., Up(X(d")) = p — d’,
and ) solves (1 — z(8)) = (1 — 8)Us(b — q) + sUs(1 — X(d")).

Proof The proof is straightforward adaptation of the argument establishin
Lemma 3.1 in Ausbel and Deneckere (1992) and is sketched in the Appendi

The bounds orSs offers and acceptances imply that no dissatisfied type
will reject an offer in order to make a counteroffer. To see this, suppose that
dissatisfied type did make a counteroffer by demanding soniet d’ be the
toughesttype that demands.e.,d’ is the infimum of the set of types demanding
X. Itis straightforward to show that would have done strictly better by imposing
a settlement rather than countering withThis contradiction implies that no
dissatisfied type will make a counteroffer.

To obtain this contradiction, note thdt obtainsp — d’ if it imposes a set-
tlement. Ifd’ forgoes the present opportunity to impose a settlement in orde
to counter withx, the game can end in only one of three ways following this
demand. First, the game might end in an imposed settlement in a future peri
Discounting ensures thdt strictly prefers imposing a settlement now to an im-
posed settlementin the future. The second way the game can endlistbepts
a future offer. Butd’ is the toughest type facing conditional onx. As shown
in Lemma 1,S will never offer more tham"s certainty equivalent to imposing
a resolution. Discounting again means tdatvould strictly prefer imposing a
settlement now to accepting the certainty equivalent of imposing a resolutic
later. Third, the game might end with the satisfied bargainer’s accegting
demand. Lemma 1 implies th&twill never accept a demand that leawsvith
more than mayt 5 (§), z(8)}. If, therefored’ foregoes an opportunity to impose a
settlement in order to make an offer tt&acceptsd’’s payoff is bounded above
by (1 — 8)Up(q) + sUp(maxXrp(d), z(8)}), which isd’’s payoff if it does not
impose a settlement, demands fraxs), z(8)} instead, ands accepts this de-
mand immediately. The Appendix shows that this bound is strictly lessittgan
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payoff to imposing a settlement now rather than making a counteroffer. @hus,
strictly prefers not making a counteroffer to any of the ways that the game migh
end after a counteroffer. Henad, can profitably deviate from countering with

x by imposing a settlement. This contradiction means that no dissatisfied typ
will ever make a counteroffer. More formally

LEMMA 2. Consider any perfect Bayesian equilibriumIaf(s) or I'p (8). If
d is dissatisfiedi.e., if p —d > Up(rs(d)), then d never makes a counteroffer

Proof. See the Appendix.

If a dissatisfied type will never reject an offer in order to make a counteroffer,
then a dissatisfied type must either accept the offer on the table or impose
settlement. Lemma 3 formalizes this.

LEMMA 3. Consider any perfect Bayesian equilibriumIaf(s) or I's(8). If
d is dissatisfied and the current offer to d igken d accepts x if P(x) > p—d
and imposes a resolution ifgi{x) < p —d.?

Proof The lemma follows directly from Lemmas 1 and 2, and the proof is
omitted.

Lemma 3 implies that a counteroffer unambiguously signalsdisatertainty
equivalent is no more thafis Rubinstein offer, because only these types might
make a counteroffer in equilibrium. Having signaled théd) is no more than
rs(8), Lemma 1 implies that the best théitcan do by making a counteroffer
is to counter with its Rubinstein demangl(8). This demand will leaveés with
1-rp(8) which isSs minimally acceptable offer. Sd,will make a counteroffer
only if, first, it is satisfied and, second, if agreeing to the current offer yields less
thanUp (rs(8)) which is the present value of agreeing g18) in the next round.
Lemma 4 formalizesdl’s decision.

LEMMA 4. Consider any perfect Bayesian equilibriumIaf(s) or I'p (8). If
d is satisfied and the current offer to d istken d accepts any % rs(8) and
counters any x< rs(8) with rp(§). If x = rg(8) and there are joint gaind.e.,
b < 1, then x is accepted with probability oAef x = rg(8) and there are no

2f dis indifferent, therd’s actions affect the satisfied player's payoff and the equilibrium outcome
only if there is an atom at the valdlg in the distribution characterizing the satisfied bargainer’s beliefs
wheredp satisfiedJp (x) = p — dp. If there is an atom alp, thendy must accept in equilibrium. For,
if dp imposes a solution with positive probability, then the satisfied state can always do strictly bette
by offering slightly more thamx which ensures thafy will accept.

3If x = rg(8), alld for whichx(d) < rp(8) are indifferent between acceptirgiow and countering
with rp (8) in the next period. Nevertheless = rs(§) must be accepted with probability one if there
are mutual gains, for ik were rejected with positive probability, the satisfied bargainer would want to
offer slightly more thams(8) and no best reply for the satisfied player would exist.
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joint gains so that the bargainers are already on the Pareto frontieen d’s
action is irrelevant to the outcomd may counter and the actors may continue
to bargain because the opportunity cost is zero when there are no joint gain:
But the status quo allocation following the rejection o4 s(8) will never be
altered as neither bargainer is willing to impose a settlement

Proof. Thelemma follows directly from the preceding lemmas and the proo
is omitted.

The previous lemmas describe the dissatisfied bargainer’s behavioral strate
at an arbitrary information set in bofts(8) andI'p (§) at which this bargainer is
considering how to respond to an offer frénin equilibrium, thereforeS will
play a best response to this strategy when making an offer. This best respol
turns out to beS's optimal take-it-or-leave-it offer, given its beliefs and subject
to the constraint that this offer is at least as larg&adRubinstein offer.

To describeS's best response more precisely, consider a simple ultimatur
game in whichS makes an offer whiclD either accepts or rejects by imposing
a settlement. LeBp[a, b] denote the satisfied bargainer’s beliefs about the dis:
satisfied bargainer’s type, whegg[a, b] is the distribution ofd conditional on
d € [a, b], given a prior distribution of. In symbols 8p[a, b](d) equals zero
ifd < a, ((Fp(d) — Fp(a)/(Fp(b) — Fp(a)) if d € [a, b], and one ifd > b.
Becausd rejectsx if p—d > Up(x) in this ultimatum game, the probability
thatx will be rejected i8p[a, b] (p—Up (X)). Consequenths's expected utility
to offeringx, conditional on belief$p[a, b] and given thaD will either accept
X or impose a settlement, is

Fpo(b) — Fp(a)
Fo(p—Up(X)) — Fp(a)
Fpo(b) — Fp(a) '

T(x.s. ofa. b)) = Us(L—x) (1_ Fo(p —Up(X)) — Fo(a)>

+(1-p-9

Lett*(s, Bp[a, b]) denote the optimal of (X, s, Bp[a, b]), where the assump-
tions thatFp has a monotone hazard rate ensurestthistunique.

As long ass’s optimal take-it-or-leave-it offet* is at least as large asg(é),
then Lemmas 1-4 imply that adl will either accept the offer or reject it by
imposing a settlement. Thus; is s's best response and is self-confirming as
long ast* > rg(8): sis effectively making a take-it-or-leave-it offer whenever
it offers at leasts(8); and given thas is making a take-it-or-leave-it offet;
is the optimal offer to make. If however; < rg(§), thent* is no longer the
optimal offer. Lemma 4 shows that all satisfi@avill rejectt* and counter with
ademand afp (8). If, therefore s offers less thans(8), the dissatisfied bargainer
no longer responds as if this were a take-it-or-leave-it offer. Accordingig,
no longer optimal. Indeed, the proof of Proposition 1 shows ithé&Y) is the
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optimal offer ift* < rg(8). In sum,s’s optimal offer, given beliep[a, b] is the
bounded take-it-or-leave-it offer of mgx (s, Bp[a, b)), rs(8)}.

The equilibrium outcome df's(§) in which S makes the initial offer is now
easy to characteriz& makes this offer conditional on its prior beliefy =
Bold, d]. Thus,s offers maxt*(s, Bp[d, d]), rs(8)} which D either accepts or
rejects by imposing a settlement. More formally,

ProPOSITIONL. Inany PBE ofi"s(68), the satisfied bargainer S initially pro-
poses its optimal bounded take-it-or-leave-it offet(sxs, fp[d, d]) =
max(rs(8), t*(s, Bo[d, d])}. Dissatisfied types accept xf Up(x*) > p —d
and impose a settlement ifddx*) < p — d. Satisfied typesaccept X with
probability one

Proof. See the Appendix.

Lemmas 1-4, which hold regardless of which bargainer moves first, shov
that the equilibria in these games exhibit a kind of bargaining shutdown. Thi:
shutdown accounts for the simplicity of the games’ equilibria and is reminiscen
of the equilibria of models in which the players have outside options the value:
of which are common knowledge and in which bargainers pay fixed per-perio
bargaining costs rather than discount (Fudenberg and Tirole, 1983, p. 246; Fi
denberg, Levine, and Tirole, 1985, pp. 87-89; Perry, 1986). This shutdown als
occurs in models in which the players do discount but also have to pay a know
entry fee before beginning to bargain (Fudenberg and Tirole, 1991, pp. 41/
429). Bargaining collapses in all of these models for the same basic reaso
If bargaining is to continue in equilibrium, there must be a toughest type tha
continues (or, more precisely, an infimum of the set of continuing types). Bu
in these models one of the bargainers is unable to commit itself to giving the
toughest type of the other bargainer that continues enough of the surplus to ma
continuing worthwhile to this toughest type. Bargaining shuts down because thi
type always strictly prefers not to continue.

IV. THE EQUILIBRIA WHEN D MAKES THE INITIAL OFFER

This section characterizes the equilibrialg$ (§) in which the dissatisfied
bargainer makes the initial offer. The section also shows that which bargaine
makes the first offer has no effect on the probability that bargaining will break
down in an imposed settlement. The probabilities of an imposed settlement i
I'p(8) andI's(8) are equal in the limit as the discount factor goes to one.

D makes the first offer im"p(8), and Lemmas 1-4 imply th& will either
accept this offer or reject it by countering with its optimal bounded take-it-or-
leave-it offer given its updated beliefB. will then either accept this offer or
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impose a settlement. The problem of characterizing the equilibiig ¢f) thus
reduces to describin@'’s initial offer.

There are three cases to be considered dependi8g pnior beliefs, and two
further assumptions are needed to facilitate the analysis of these cases. The
assumption is thab’s demands are connected in type. That is, if two types, sa
d; andd,, make the same demand after some history, then all types betlveen
andd, make the same demand after the same history. The second assumpt
imposes a restriction on a bargainer’s beliefs following an equilibrium deman
made by a nonempty but measure-zero set of types. Suppose that a set of ty
of D makes a common demandin equilibrium and that this set, although
nonempty, has probability zero. Then the supporEefbeliefs conditional on
x will be assumed to be a subset of the set of types that made this demand :
that were in the support dbs beliefs when this demand was made. That is,
let Dy be the set of types that demardnd suppose that this set is nonempty
but has measure zero. Then, the suppoi®steliefs followingx must be in
the intersection oD, and the support oEs beliefs just prior to receiving.

D’s beliefs are similarly restricted. Finally, note that this assumption places r
restriction on the bargainers’ beliefs following a demand that no type woul
make in equilibrium.

The first case that needs to be examined is at one extreme. SuppdSis that
confident thaD is dissatisfied that all offer D the certainty equivalent dD’s
toughest type. In symbolsi (s, Bp[d, d]) = X(d) for all s. This offer is large
enough to ensure that allaccept. In the context dfs(§), these beliefs imply
that allsinitially offer X(d) and that the probability of breakdown is zero. In the
context of"p(8), these beliefs mean thatdfis sufficiently close to one, then
essentially ald pool on a common demand in any PBEIG§(8). This pooling
leavesSss initial beliefs substantially unchanged. 3fmakes a counteroffer, it
continues to offer the certainty equivalent of the toughest type it might be facin
and the probability of breakdown is also zerdlp(3).

At the other extremeSis so confident thab will notimpose a settlement that
S's optimal take-it-or-leave-it offer for all typesis its Rubinstein offer s(8),
which is what it would offer if the option of imposing a settlement were abbent.
In the context ofl"'s(8), Ss initial offer would berg(8). All d that prefer an
imposed settlement to this offer impose a settlement, and all dthecept the
offer. Thus, the probability of breakdown is the probability tipat d > rs(8)
or, in other words, thab is actually dissatisfied. Ii'p(8), alld € [d, d) pool

4 Models of pretrial bargaining often exclude this case by assuming that the plaintiff (i.e., th
potentially dissatisfied bargainer) always prefers going to court if the defendant refuses to pay &
damages. (See, for example, Reinganum and Wilde, 1986, and Spier, 1992. Nalebuff, 1987, is, howe
an exception.) This case is likely to arise when the dissatisfied bargainer is wegkjs.emall, and
needs to be considered if the relation between the probability of breakdowmiatwlbe characterized
for p small.
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on a nonserious demand, i.e., a demand that is rejected with probability one, a
alld e (d, d] demand (3). d is the unique type that is just indifferent between
obtainingrp(§) immediately or obtainingS's counteroffer conditional ois's
beliefsBp[d, d]. In the limit as the discount factérgoes to one, the probability

of breakdown equals the probability tHatis dissatisfied.

In the third and intermediate casg@makes counteroffers between the bounds
rs(8) andX(d) given its prior ofFp. Here, alld pool on a common, high demand
inany PBE ofl"p (8) if § is sufficiently close to one. Because the demand is high,
S generally rejects it and makes a counteroffer. Because of pooling, updatin
does not chang&'s priors, andS's counter in["p(8) is the same as its initial
offer in 's(8). The probabilities of breakdown in these two games are the sam:
in the limit as the discount factor goes to one.

Alltypes pool inthe intermediate case above, and there are substantial amour
of pooling in the extreme cases. Figure 2 helps make the reason for the comple
pooling in the intermediate case clear and helps develop the intuition underlyin
the proof of this case in Proposition 2. Suppose that there are at least two distin
demands. The assumptions that the set of types making the same demanc
connected means that the sitd®) makes one demand, sayand(d’, d] makes
another demang, wherex # y andd® < d’. Conditional on an initial demand
X, Swould never counter by offerin® less thard®’s certainty equivalent of
imposing a settlement. Such an offer would be rejected for sure and is alway
dominated by offeringl® its certainty equivalent. Indeed in the intermediate
case,Ss counter, if it makes one, is strictly bounded belowdf{s certainty
equivalent, which is denoted I5%d°). Accordingly,d®s payoff to demanding
x is strictly bounded below byl — §)Up (q) 4+ 8Up (X(d®)) which isd®’s payoff
if Scountersk with X(d°).

Becaused’ is offered more than its certainty equivalent of imposing a set-
tlement,d® acceptsSs counter. Becausd® accepts, any other type can cost-
lessly mimicd®. In particular, anyd demandingy can costlessly mimid® by
demandingx instead and thereby obtain a payoff strictly bounded below by
(1 - 8)Up(q) + 8Up(X(d).

For discount factors close to one, the types demanglistyictly prefer to
deviate by demanding. To see this, observe that demandingignals thaD’s
payoff to an imposed settlement is no more thikB certainty equivalent of
X(d). Lemma 1 then implies th& will never offer more than the maximum of
its Rubinstein offers(8) and the certainty equivalent df, the toughest type
that S might be facing conditional og. In the intermediate case, the certainty
equivalent is larger than the Rubinstein offerSoever offers more thak(d’).

This maximum offer implies that the best that ashgan do, given that it has
signaled that its payoff to an imposed settlement is no more %kidn, is to
make a demand that leav&sindifferent between accepting this demand and
countering withk(d’). Thus,d"s payoff to demanding is bounded above by
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d a’° a d
FIG. 2. D’s initial demand.

Up(z(8)), wherez(s) solvedUs(1—2z(8)) = (1—8§)Us(b—q) +8Us(1—X(d")).
Incentive compatibility requires that the lower boundite payoff to deviating
to x be at least as large as the upper bound to demangdiut d”’s payoff
to deviating tox is strictly bounded below byl — §)Up(q) + 8Up(X(d%)),
andd® < d’ impliesX(d®) > %(d’). Consequently, the incentive-compatibility
requirement cannot hold in the limit @sgoes to one. Thug)’ would have a
positive incentive to deviate fromto x if there were two distinct demands.

To characterize the equilibrium &fy () more formally, recall that the limit
of the Rubinstein offers(8) asé goes to one is the Nash bargaining solution
which is denoted by. Then,

PrROPOSITION2. For anye > 0, there exists & < 1 such that

(i) Ift*(s, Bold, d]) = %(d) > r,thenalld e (d+e, d] pool on a common
demand in any PBE dfp(8) wheneves > §.

(i) If t*(5, Bo[d,d]) < r, then all d € [d, d(8)) pool on a nonserious
demandandall d= (6(8), d] poolonrp (8) inany PBE of ' (§) wheneves > §,

5 This argument needs to be amended in the two extreme cases. In thes&esases)ter toy may
not be strictly bounded abow®’s certainty equivalent. OS may countex with rs(8) which is larger
thand’’s certainty equivalent. These possibilities make for somewhat less pooling.
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whered(8) is the type that is indifferent between obtainirgs) immediately or
waiting for S’s optimal counteroffer conditional on S’s beligfdd, d(3)]; i.e.,

d(8) solves b (rp (8)) = (1-8)Up(q)+3 f;UD(X*(S» 8, Bold, d($)]))d Fs(s).

(iii) If X(d) > t*(s, Bo[d, d]) and t*(3, Bp[d, d]) > r, then all d € [d, d]
pool on a common demand in any PBEWf(8) wheneves > §.°

Proof. See the Appendix.

Two remarks about Proposition 2 are in order. The first focuses on the restric
tion put on beliefs atinformation sets following an offer made by a nonempty but
zero-measure set of types. Recall that if a nonempty set of types in the suppc
of S's beliefs at some information set makes a demanthen the support of
S's beliefs conditional orx must be contained in the nonempty set that might
have demande# even if this nonempty set has probability zero. Without this
restriction, the equilibrium outcomes Bg(8) andI'p (§) may be quite different
even in the limit a$ goes to zero.

Toillustrate this possibility, suppose, as in the first case above in Proposition 2
that S's prior beliefs,Fp, are such that’s optimal take-it-or-leave-it offer is to
ensure that a settlement will not be imposed by offering the certainty equivaler
of the toughest type; i.e., aloffer X(d). Assume further that all types @ are
dissatisfied. Proposition 1 then implies thatsadiffer X(d) in I's(8). This offer
is accepted with probability one, leaving the probability of breakdown equal to
zero.

Without some restriction on wh& can believe after receiving an offer from
a nonempty, measure-zero set of types, it is easy to construct an equilibriul
of I'p(8) in which the probability of breakdown is one. Suppose ehaomakes
the largest possible demand thsatvould accept conditional on being sure of
facingd. That is,d demandsz(d), wherez(d) solvesUs(1 — z(d)) = (1 —
8)Us(b — q) + 8Us(1 — X(d)). Although each type makes a distinct demand,
the probability that any particular demand will be made is zero. If no restriction
is put on these beliefs may be assumed to put probability one on facing the
weakest typed. These beliefs imply thatwill agree to any demand that leaves
it with at least 1— z(d) and will counter any greater demand by offeril).
These strategies form an equilibrium in which the probability of breakdown is
one. The restriction put on beliefs above eliminates equilibria of this type by
requiringSto infer from a demand af(d) that it is facing a type that might have
made this demand, namaty

The second remark focuses @is participation constraint if'p(8). The
extensive form of"p (§) does not permit a player to try to impose a settlement

6 The cases in which*(S, 8p[d, d]) = r or(d) = r are excluded as being nongeneric.
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in the same round in which it is making an offer. When making an offer,
player’s next opportunity to impose a resolution will come in the next rounc
if its offer is rejected. Consequentli) cannot impose a settlement in the first
round of'p (8), andd generally obtains less in the pooling equilibrialgf ()
described in Proposition 2 th&i, (X(d)) which is the payoffl would receive if

it could impose a settlement in the first round or prior to entering the bargainin
Depending on the substantive interpretation underlying the model, this wou
seem to violata@l’s participation constraint. The idea here is that there is som:
positive but arbitrarily small cost to not entering the negotiations. In internation:
politics, for example, it may be costly in terms of public support to be seen &
unwilling to sit down at the negotiating table. If there is a positive but arbitrarily
small cost, then as long as the discount factor is close enough tal omid,
strictly prefer making a demand to forcing the issue without having been at tt
table.

Propositions 1 and 2, respectively, characterize the equilibriawhen the satisfi
bargainer moves first or second. Proposition 3 shows that the order of play F
no significant effect on the probability of breakdown if the discount factor is
sufficiently close to one.

PropPOSITION3. For any distribution of power p and ary> 0, there exists
aé < 1such that the probabilities of breakdown in any PBHgfS, p) and
I'p (8, p) differ by less thar wheneveb > §.

Proof See the Appendix.

Proposition 3 means that the relation between the probability of breakdow
and the distribution of power can be examined solely in terms of the much simpl
equilibrium of"s(8), where the probability of breakdown is just the probability
that S's bounded take-it-or-leave-it offer will be rejected.

V. THE PROBABILITY OF BREAKDOWN

The disparity between the Nash bargaining solution and the allocation e

pected to result from an imposed settlement is crucial to the relation betwe
the distribution of power and the probability of breakdown. Figure 1 provide:
some intuition. The option of imposing a settlement is incredible wherfever
Pareto-dominated by the Rubinstein outcomédargaining never breaks down
inthese circumstanceR, moreover, dominatds if the expected imposed settle-
ment(p, 1— p) is not too different from the Nash bargaining solutionl —r).
To see this, recall that in the limit as the discount factor goes to one, the R
binstein outcomeR converges to the player’s utilities for the Nash bargaining
solution, i.e.,R = (Up(r), Us(1 —r)) as the discount factor goes to one.Thus,
R Pareto-dominatek in the limitif Up(r) > p—dandUg(l—r) > 1—p-—s.
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Concavity impliedJp(r) > r andUs(1 —r) > 1 —r, so R Pareto-dominates
Faslongas > p—dand1-r > 1— p—s. The latter two inequalities hold
whenevetp —r| < min{d, s}. Hence, the probability of an imposed settlement
is zero as long as the difference between the expected allocation of an impos
settlement and the Nash bargaining solution is not too large.

A natural conjecture about the relationship between the probability of break
down and the distribution of power is that this probability is nondecreasing in
|p — r|. (It cannot be strictly increasing, because it is zero whengverr | is
small.) As shown in the Appendix, this conjecture holds if the bargainers are ris|
neutral. It also holds if the bargaining problem is sufficiently symmetric in that
the bargainers have identical utility functions and the Nash bargaining solutiol
is an even distribution of the benefits = %). A counterexample, however,
shows that if the actors are risk averse and the bargaining problem is sufficientl
asymmetric, then the probability of breakdown may not be monotonic in the size
of the disparity.

In the context of pretrial bargaining, these results imply that the probability
that a dispute will go to trial is nondecreasing in the strength of the plaintiff’s
case. If the issue in dispute is whether the defendant will pay damages, then tl
plaintiff is the potentially dissatisfied bargainer as only the plaintiff could gain
by an imposed settlement. If, moreover, the plaintiff and the defendant are ris
neutral as is generally assumed (e.g., Reinganum and Wilde, 1986; Nalebu
1987; Schweizer, 1989; and Spier, 1992), then the probability that the disput
will go to trial is nondecreasing itp — r|, wherep is the probability that the
plaintiff will win and r is the plaintiff's share in the Nash bargaining solution
of the game if the outside option of imposing a settlement were not presen
If the option of going to court were not present, the defendant would not pay
anything to the plaintiff. The plaintiff and the defendant are already on the Paret
frontier, so the Nash bargaining solution is simply the existing allocation. Thus
the plaintiff's share at the Nash bargaining solution is 0, and the probability
that the bargaining will break down is nondecreasing.in

In the context of international relations theory, the results derived here con
flict with both the balance-of-power school, which holds that an even distribu-
tion of power is more stable (e.g., Morganthau, 1966; Wright, 1965), and the
proponderance-of-power school, which holds that a preponderance of power
more stable (Blainey, 1973; Organski and Kugler, 1980; Levy, 1989). If a bal-
ance of power were more stable, the probability of breakdown should reach
minimum atp = % and generally increase as the distribution of power becomes
more uneven or ay — %| increases. If a preponderance of power were more
stable, then the probability of breakdown should be smallest at the extremes
p = 0 or p = 1 and generally increase qnsapproache%. In the bargaining
model analyzed here, the probability of breakdown is smallept=atr, andr
is, in general, not equal to @, or 1.
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CONCLUSION

In many bargaining contexts, a bargainer can use some form of power—be
legal, military, or political—to try to impose a settlement. Whether it choose:
to exercise this “outside” option depends on the prospects of reaching a mc
favorable agreement. Bargaining in the shadow of power raises at least t
guestions: How does the shadow of power affect the equilibrium distribution ¢
benefits, and how does the probability of breakdown vary with the distributio
of power? In the model studied here, the equilibrium distribution is given b
the satisfied bargainer’s constrained optimal take-it-or-leave-it offer. And, th
probability of breakdown is zero if the allocation of benefits expected from a
imposed settlement is the same as the Nash solution. If, moreover, the bargair
are risk neutral or if the bargaining is symmetric, the probability of breakdow:
is nondecreasing in the disparity between these two allocations.

APPENDIX

Preliminaries It will be convenient in what follows to introduce some notation
and basic relations. Defin&(x, §) andB(x, §) as follows:

A, 8) = (1—8Up(a) +8Up(1 — Ug((1 — $)Us(b — @) + 8Us(1 — x)))
B(x,8) = (1—-8)Us(b—q) +8Us(1— U ((1 - $)Up(Q) + 8Up(X))).

The equatiorJp (x) = A(X, 8) is equivalent to eliminatingp (§) from Eq. (1).
Thusr g(8) is the unique solution dfp (x) = A(X, §), where uniqueness follows
from the assumptions thats andUp are increasing and concave. Moreover,
Up(X) > A(X,9) if X > rs(8) andUp(X) < A(X, d) if X < rg(8). Similarly,
ro(8) is the unique solution diis(1 — x) = B(x, §) with B(X, §) > Us(1 — X)

if X >rp(8) andB(x, ) < Usg(1l— Xx)if X <rp(d).

Proof of Lemma.. The proof is an adaptation of the argument establishin
Lemma 3.1 in Ausubel and Deneckere (1992, p. 606) and so it will only b
sketched here. Létbe any information set at whichis making an offer and let
d’ denote the infinum of the supports}$ beliefs about the dissatisfied bargainer.
Less formally,d’ is the toughest type t hatbelieves it might be facing dt.
Assume further that satisfiedJs(1—2z) = (1—8)Us(b—q) +8Us(1— X(d")),
where X(d’) is the certainty equivalent al’ for imposing a settlement; i.e.,
Up(X(d)p—d.

To see thas will never offer more than maxs(8), X(d’)} or agree to give the
dissatisfied bargainer more than fiax(8), z} in a perfect Bayesian equilibrium
given thath has been reached, febe the supremum afs offers or acceptances.
Now considerd’s decision at any information set along the equilibrium path,
given thath has been reached's payoff to rejectings’s offer or forcing the
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issue is bounded above by nfak— §)Up(q) + dUp(X), Up(X(d"))}. The first
element is the best that potentially dissatisfied bargainer can do if it rajects
offer and the bargainers subsequently reach an agreement. The second elem
is the upper bound od’s payoff if Sor D ultimately compels a resolution. This
bound means that would accept any offek such thatx > maxy, X(d"))},
wherey solvesUp () = (1 —8)Up(q) + §Up(X). But, s will never offer more
than the minimal amount required to induce the potentially dissatisfied power t
accept. That iss will only make offersx such thaix < max{y, X(d")}.

In sum, s never offers more than méyx X(d’)}. So, Lemma 1 will hold if
maxy, X(d)} < max{rs(s), X(d")}. To establish this inequality, it will suffice
to show thaty > X(d’) impliesy < rs(8). Assumey > X(d). Then, by
construction,s either accepts or proposesvace (X — €, X] for any e > 0.
Becausex > Y, € can be taken small enough to ensure that y. Because
v >y =maxy, X(d")}, d must have proposedands must have accepted.

Now supposex > rp(8), thens's acceptance leads to a contradiction. To
see this, note that in equilibrium cannot improve its payoff by rejecting
But supposes rejectsv and counters with some > y > X(d'). Because
w > maxy, X(d")}, the dissatisfied bargainer can never expect a more favorabl
agreement in equilibrium. Thusl| accepts, leaving with a payoff of (1 —
8)Us(b—q) +8Us(1 — w) from countering withw; s therefore has an incentive
to deviate if there exists @ > y such thaUs(1 —v) < (1 —8)Us(b —q) +
3Us(1 — w) for v close enough t&. But the assumption th&t > rp(§) implies
Us(1—X) < B(X, §), whereB is defined in the preliminaries above. Continuity
and the fact that the previous inequality is strict then imply that there exists al
€ > Osuchthatls(1 — (X — €¢')) < B(X — ¢, 8) for anye ande¢’ in [0, €]. But,
B(X—¢,8) =(1—-8)Us(b—q)+8Us(1— (y+u)) forapu > 0. Finally, recall
thatv € (X—¢, X]. Takinge’ = X —v then givedJs(1—v) = Us(1— (X—¢)) <
B(X—e¢,8) = (1-8)Us(b—qg)+8Us(1— (y+n)); s, therefore, strictly prefers
to counter with y + .

This contradiction leavas, (§) > X. This inequality in turn implie¥)p (y) =
(1 -8)Up(@) +38Up(X) < (1 —§)Up(q) + 8Up(rp(8)) = Up(rs(8)). Thus,
rs(8) > vy, ands will never offer more than mgxs(8), X(d)}. It immediately
follows thats will never agree to more than mgy (8),z}. =

Proof of Lemm&. The discussion preceding the formal statement of Lem-

ma 2 shows that it will suffice to demonstrate thifis payoff to imposing

a settlement is strictly greater thal's payoff if it does not impose a set-
tlement, it demands the upper bound of wisamight accept, and imme-
diately accepts this maximal demand. That is, Lemma 2 holgs- d’ >

(1 —8)Up(q) + sUp(maxXrp(8), z(8)}), wherez(s) solvesUs(1 — z(8)) =
(1—-8)Us(b — q) + sUs(1 — X(d")). Becausal’ is dissatisfiedg(d’) > rs(8)
which implies maxrp (8), z(8)} = z(8). Further,X(d") is d”’s certainty equiva-
lent to imposing a settlement, &b, (X(d")) = p — d’. Thus, it suffices to show
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Up(X(d) > (1-8)Up(0)+38Up(1—Ug*(1—8)Us(b—q)+8Us(1—X(d")))).
In terms of the preliminaries above, this inequality is equivalehigoX(d’)) >
A(X(d"), §) which holds as long a&(d’) > rs(8). Butx(d’) > rs(8) becausa’
is dissatisfied. =

Proof of Propositionl. Lemmas 1 through 4 characteriBes reaction for
all typesd to an offer at any stage of the game and, in particulagsanitial
offer in I's(8). To see thas's best reply isx*(s, 8, Bo[d, d]) = maxrs(s),
t*(s, Bp[d, d])}, suppose that some did offer somex < rg(8). Lemma 3
implies that all dissatisfied types impose a settlement. Lemma 4 shows that
satisfied types rejest and counter withip (§) which Saccepts with probability
one. Accordinglys's expected payoffigl — p—s)Fp(p—Up(rs(8))) + ((1—
3)Us(b—q)+38Us(1—rp(8))))(1—Fp(p—Up(rs(8)))). But,s's expected payoff
to offeringrs(s) is (1 — p—s)Fp(p—Up(rs(9))) + Us(1—rs(8))(1— Fo(p—
Up(rs(8)))). The latter payoff is strictly greater than the payoff to offering
if Fo(p —Up(rs(8)) < 1 becauses strictly prefers to settle ons(§) now to
settling orrp (8) in the next period. IFp (p—Up (rs(8))) = 1, then the certainty
equivalent of the weakest type is at leas®), i.e., X(d) > rs(8), and an offer
of rs(8) or less will be rejected with probability one. But it is easy to show (see
Lemma 1A below) thas would strictly prefer to offer slightly more than the
certainty equivalent of the weakest type in order to create at least some chai
that its offer will be accepted. Again, an offerof< rg(§) is strictly dominated.

s's best reply is then to maximiZB(x, s, Bp[d, d]) subject tox € [rs(8), 1].
If t*(s, Bp[d, d]) > rs(8), then the requirement that> rg(8) is irrelevant and
x* = t*. If t* < rg(8), then the concavity of over [X(d), X(d)] ensures thal
is decreasing fox > rs(8), soT takes on its maximum ag(8) if x € [rs(8), 1].
Accordingly,x*(s, 8, Bo[d, d]) = max(rs(8), t*(s, fo[d. d])}.

Constructing PBEs that satisfy the requirements of Lemma 1 through 4 ai
Proposition 1 is straightforward. m

Proof of Propositior2. The proofs of cases (i) and (iii) are given here. The
proof of case (ii) is tedious and much of it parallels the proof of case (iii)
Accordingly, the intuition underlying case (ii) will be sketched, but the proof
will be omitted.

Before considering cases (i) and (iii), it will be useful to introduce some
notation and establish a lemma. Consider any perfect Bayesian equilibriu
(o (8), u(d)) of I'p(8) and letx(d, §) be d’s equilibrium demand at the start
of the game and takd®(8) to be the weakest type demandir¢d, §). More
formally, d°(8) = sug{d: x(d, §) = x(d, 8)}. Then all typesl < [d, d°(8)) pro-
posex(d, 8). (Typed®(8) may or may not demane(d, 8).) Similarly, x(d, )
is d’s equilibrium demand at the beginning B (8) in (o (8), (8)), andd’(8)
equals infd: x(d, 8) = x(d, 8)}. Accordingly, all types in(d’(8), d] demand
x(d, 8). Table 1A summarizes these definitions, as well as some additional hel
ful notation which will be introduced as neededn
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TABLE IA
Notation
x(d, §) = d’s initial demand in the equilibriungo (), 1. (8))
d’'(8) = inf{d: x(d, 8) = x(d, 8)}
do(s) = sugd: x(d, §) = x(d, 8)}
d° = a lower bound orl®(8) for § in a neighborhood of one
X(d) = d’s certainty equivalent for fighting, i.ep — d = Up (X(d))
Bpla, b] = s's updated beliefs if altl in [a, b] make the same initial offer

T(x,s, Bpla, b)) s's expected payoff to making the take-it-or-leave-ofter
given beliefsgp[a, b]
the offer that maximize¥ (x, s, Bp[a, b])

maxrs(8), t*(s, fpla, b))}

t*(s, Bola, b))
X*(s, 8, Bpla, b))

The lemma shows that#is uncertain of the type it is facing, then its optimal
take-it-or-leave-it offet* is always strictly greater than the certainty equivalent
of the weakest type it might be facing.

LEMMA 1A. t*(s, Bpla, b)) > X(b) for all s whenever b- a.

Proof. Suppose offersX(b) + €. Letting o > 0 denote the probability that
this offer is rejected, theg's payoff will be (1 — p — s)p + (1 — p)Us(1 —
(X(b) + €)). The payoff to offeringk(b) is 1 — p — s. Becausefp > 0 over
(d,d), p < 1. Accordingly,s will strictly prefer to offerX(b) 4+ ¢ whenever
Us(1-(X(b)+€)) > 1—p—s.But,Us(1-X(b)) > Us(1-X(a)) > Us(1-x(d))
becausd > a > d. And, Us(1 — X(d)) > 1 — p — s becauseS is satisfied.
ConsequentiyJs(1 — X(b)) > 1 — p — s. So there exists an > 0 such that
Usl—XMb)+e¢)>1—p—5s. =

Case(i). The satisfied bargaineris so confidentthat the dissatisfied bargaine
is tough that alk offer the certainty equivalent of the toughest type conditional
on their prior beliefs, i.et*(s, Bo[d, d]) = %(d) > r.

Assume the claim made in the proposition does not hold. Thenitis possible t
construct a sequence of PBfs(8y), 0 (8n) 102, 0f I'p (8n) such thas,, converges
to one and thel’(5,) are bounded away fromh. In the limit ass, goes to one,

d will prefer to deviate fromx(d, 8,) to x(d, 8,), and this contradiction will
establish the claim.

Three observations ensure that ahthat mimicsd by demanding«(d, §y)
will receive a payoff of at leastl — §,)Up(q) + §,Up(X(d)), which is the
payoff d would receive from making a nonserious demand and then beinc
offered its certainty equivalent. Firsss optimal counter tox(d, §,) is the
certainty equivalent of the toughest type that might make this demand; i.e
X*(s, 8, Bo[d, d°(8,)]) = X(d) for all s. This follows from the envelope theo-
rem which ensuret*(s, 8p[d, €]) is nonincreasing ire and nondecreasing in
s. S0, x*(s, 8, Bpld, €]) is nonincreasing ire and nondecreasing is which
implies X(d) > x*(s, 8, Bold. d°n)]) = X*(s, 8, Bold. d]) = %(d) for all s,



BARGAINING IN THE SHADOW OF POWER 279

where the first inequality simply reflects the fact thasmveould offer more than
the certainty equivalent of the toughest type.

Second, anyg that demandg(d, §,) will obtain whatd obtains from making
this demand. If this demand is accepted, lwbimdd receivelp (x(d, 8y)). If this
demand s rejected, then altounter withk (d) as was just shown. But the payoffs
to bothd andd of receiving this counter ard — §,)Up (q) + 8,Up (X(d)). Thus
anyd can obtain the same payoff dsloes by demanding just whditdemands.

The third observation is that's payoff to demanding(d, 8,) is bounded
below by (1 — §,)Up(q) + 6,Up(X(d)) and, therefore, ang can obtain at
least(1 — 8,)Up(q) + §nUp(X(d)) by demandingx(d, 8,). To see this, as-
sumex(d, §,) is rejected with probability one. The first observation shows
that alls will counter with x*(s, 8, Sp[d, d°(8)]) = X(d), leavingd with (1 —
dn)Up(Q) + 8nUp (X(d)). Now suppose(d, &,) is accepted with positive prob-
ability. Individual rationality requires thal’s payoff to demanding«(d, §,)
be at least as large @& — 8,)Up(qQ) + 8,Up(X(d)), which is whatd could
obtain by making a nonserious offer and then imposing a resolution. To e
tablish this requirement, note theis payoff conditional onx(d, §,)’s being
rejected is(1 — 8,)Up(q) + 8,Up(X(d)); d's payoff conditional orx(d, ,)’s
acceptance iflp(x(d, p)). If p(x(d, 8,)) denotes the probability thatd, 5,)
is rejected, individual rationality then mealds (x(d, 8,))[1 — p(X(d, )] +
[(1 = 8:)Up (@) + 82(Up(X(@)]p(x(d, 81)) = (1 — 8:)Up(Q) + 8aUp(X(d))
which leaveUp (X(d, §,)) > (1 — 8,)Up(Q) + 8,Up(X(d)). Thus, the three
observations imply that any that demands(d, §,) will receive a payoff of at
least(1 — 8,)Up(q) + dnUp(X(d)).

Turning tod’s payoff from making its purported equilibrium demand of
x(d, 8,), Lemma 1 implies those demandimgd, §,) can do no better than
Up(max{rp(8n), 2(8n)}), Wwherez(s,) solveUs(1-2(5n)) = (1-8,)Us(1-q)+
3nUs(X(d'(8n))). Incentive compatibility then requires thétcannot benefit by
demanding(d, 8,) instead ok (d, 8,,). Accordingly,Up (max(rp (8n), z(8,)}) >
(1—38n)Up(q) + 8nUp (X(d)). Since{d’'(8n)}52, is bounded away frord, it is a
subset of §l + ¢, d] for somee > 0. Taking the limit of the previous inequality
along a convergent subsequence yields the contradidiggmax(r, X(d°))}) >
Up(X(d)) forsomed® > d. m

Case(iii). t*(s, Bp[d, d]) < X(d) andt*(S, Bp[d, d]) > r. The proof takes
four steps. Assuming that there are two distinct demands in a PBE&fbitrarily
close to one, the first step shows that the probability thatanyd®(8) imposes
a settlement is zero. The second step establishesi®%ait is bounded away
from d. With d°(8) bounded away frond, the third step uses Lemma 1A to
demonstrate thad®(8)’s payoff to demanding(d, 8) is strictly greater than
and bounded away from the payoff ¢8(6)’s certainty equivalent foé close
to one. The final step then shows tlagprefers to deviate te(d, §) instead of
demanding(d, 8).
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Stepl.Ifd > d°(8), then the probability that d imposes a settlement is zero

Suppose the contrary. Then there existe and® such thatimposes a settle-
ment with positive probability. (Th& in, for exampled®(s) will be suppressed
in order to simplify the notation whenever this can be done unambiguously.
Becausee > d° d%s cost for trying to impose a resolution is strictly less than
e's. Thus, the payoff tal® of mimicking €'s initial demand ofx(e) is strictly
greater thare's payoff because imposes a settlement with positive probabil-
ity. Letting Up (d, X) denoted’s expected payoff to demandingand thereafter
playing according to Lemmas 1-3 then givés(d®, x(e)) > Up(e, X(e)) + ¢,
wheree is some small positive number.

Becausee > d°, €'s equilibrium demand oX(e) is distinct fromd’s demand
of x(d). Consequentlye can have no positive incentive to deviate frouge)
by demandingk(d) instead. That isl/p (e, x(€)) > Up(e, x(d)). Lemma 1A,
however, implies that ang rejectingx(d) will offer strictly more thanx(d®).
Thus, the probability thatl® will subsequently impose a settlement if it de-
mandsx(d) is zero. Hencee can demand(d) and obtain the same payoff
thatd® obtains from demanding(d). So,Up (e, x(d)) = Up (d°, x(d)). Finally,
Up(d°, x(d)) > Up(d°, x(e)). Otherwise, continuity would ensure that sothe
less thard® but arbitrarily close tal® would have an incentive to deviate from
their equilibrium demand of(d) to x(e). These relations yield the contradiction
U (e, x(€)) > Up(e, x(d)) = Up(d°, x(d)) > Up(d® x(€)) > Up(e, X(e))+e.

Step2. d° is bounded away from;d.e., there exists a®l > d and as < 1
such that 4(8) > d° wheneves > §. Suppose the contrary. Then there is a
sequence of PBEs df (8,) such thas, converges to onel®(s,) converges to
d, and, looking along a subsequence if necesst(y,) also converges. This
assumption leads to a contradiction.

d’(8,) must converge ta. This follows from Lemma 1 which implies that
d’s payoff to demanding(d, §,) is bounded above by, (maxrp (8,), 2(8n)}),
wherez(8,) solvesUs(1 — z(8n)) = 1 — 8n)Us(b — q) + 8,Us(1 — %(d'(8n))).
d’'(6n)’s payoff to demanding(d, 8,) is bounded below by what it obtains if
s rejects this demand and counters with the certainty equivalent of the weake
type s might be facing. This payoff i$1 — §,)Up(q) + 8,Up (X(d°(8n))). In-
centive compatibility then requires thditannot benefit by demandingd, 5,,):
Up(max(rp(8n), 2(8n)}) > (1= 81)Up(Q) + 8:Up (X(d°(8n))). Taking the limit
givesUp(maxr, X(d'))}) > Up(X(d)). But X(d) > r by assumption. Saj’
must equad.

The convergence al'(8,) to d implies that ifs is sufficiently close to one,
then x(d, 8,) must be accepted with positive probability. Assume the oppo-
site. Then there would exist a subsequeffg converging to one such that
x(d, 8m) is rejected with probability one. Step 1, however, shows thad o
d'(8m) = d°(8,) can impose a settlement with positive probability. Thus, all
s must counterx(d, 8,,) with at leastX(d’(8m)); otherwise the fact thaSs



BARGAINING IN THE SHADOW OF POWER 281

offers are continuous in type would imply that someslightly larger than
d’(8m) would reject the counter and impose a settlement with positive prok
ability. In particular, the toughest type &, s, must counterx(d, 8,) with
X*(S, 8m, Bo[d'(8m), d]) = X(d'(8m)). Taking the limit along this subsequence
then gives<*(s, 1, Bp[d, d]) > %(d). This, however, is a contradiction, because
the condition defining case (iii) implies

X*(§v 11 IBD[Q9 d]) = maX{r, t*(§1 ﬁD[g’ d])} < )N((g)

If 8, is close enough to one, then the payof§taf accepting«(d, 8,) must be
atleast as large as its payoff to countering. Suppose that this is not so. Then th
would exist a subsequené&,} converging to one such thastrictly prefers to
counterx(d, 8m). This strict preference implies that a neighborhood arasind
which has positive measure would reject, 5.,). If, therefore s counters with
less thark(d’(6m)), then the fact tha®'s offers are continuous in type means that
somed > d'(8y,) will reject this counter and impose a settlement with positive
probability in equilibrium. This contradicts step 1. Consequentiyust counter
with at leastk(d’(8m)), i.€.X*(S, 8m, Bo[d’(Bm), d]) = X(d'(8y)). The argument
in the previous paragraph now yields a contradiction.

The sequence(d, §,) contains a subsequence which converges t’aihe
fact thats's payoff to accepting(d, 8,) is at least as large as its payoff to
countering impliest(d) > x°. In symbolsUs(1 — x(d, 8,)) > (1 — 8,)Us(b —
qQ) + SnT(X*(S, 8n, Bol[d'(8n), d]), s, Bo[d'(8n), d]) for 8, close enough to one
implies X(d) > x°. To see this, take the limit a%, goes to one. This gives
Us(1 — x% = T(x*(s, 1 Bold. d]), s, fo[d. d]). But x*(s, 1, fp[d. d])) =
max(r, t*(s, Ap[d, d])} < X(d), where the inequality follows from the condition
defining case (iii). Moreovex*(s, 1, p[d, d]) is the uniquex that maximizes
T(x,s, Bold,d]) for all x € [r,1]. So, T(x*(s, 1, fo[d,d]), s, fo[d,d]) >
T(x(d), s, Bo[d, d]), where the inequality is strict becausgs, 1, Bp[d, d]) #
%(d). Finally, T(%(d), s, Bo[d, d]) = Us(1 — X(d)) because an offer cf(d) is
accepted. Putting these inequalities together dikgd — x°) > Ug(1 — X(d))
or X(d) > x°.

The previous inequality and the fact thaid, §,) is accepted with positive
probability leads to the contradiction thdtprefers deviating to(d, 8,) for
8 sufficiently close to one. The positive probability of acceptance implies the
d’(8,)’s payoff if this demand is accepted must be at least as large as its payoff
making a nonserious demand and then imposing a settletdgix(d, 8,)) >
(1—-8n)Up (@) + 8:Up (X(d'(8n))). Taking the limit yieldsUp (x%) > Up (X(d))
or x% > %(d) which contradicts the inequality(d) > x° and, accordingly,
implies thatd®(8) is bounded away frord.

StepB.d°(8)’s payoffto demanding(xl, §) is strictly greater than and bounded
away from the payoff to obtaining the larger of its certainty equivalent or its
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Rubinstein sharg.e., there exists @ < 1and ane > 0such that 4(5)’s payoff

to demanding &, §) is at least Uy (maxX{rp (8), X(d°(8))}) + € wheneves > §.
The payofftad®(s,) of demanding(d, 8,) is bounded below bgl—§,)Up ()

+ 8 szUD(x*(s, 8n, Bold, d°(8,)]))d Fs. This is clearly so if this demand is

rejected with probability one, fos will counter with x*(s, 8,, Bo[d, d°(8,)])
which d°(8,,) accepts because it is greater thafis,)’s certainty equivalent.

If x(d, 8n) is accepted with positive probability, then, as shown in case (i),
d's payoff if this demand is accepted must be at least as large as its pay
off to making a nonserious demand and then imposing a settlement. That i
Up(x(d, dn) > (1 — 8)Up(q) + 3,Up(X(d)). But nos ever offers more
than X(d), so Up(X(d)) > Up(X*(s, &, Bold, d°(8n)]). So,d’(8n)'s payoff

to demandingk(d, 8,) conditional on facing ais that accepts is bounded be-
low by (1 — 8,)Up(Q) + 8:Up (X*(S, 8n, Bold. d°(n)]). d°(8n)'s payoff is ex-
actly (1 — 8n)Up(q) + 8,.Up (X*(s, 8y, Bo[d, d°(8,)]) conditional on facing an

s that rejects. Thusg®(s,)’s payoff is bounded below byl — §,)Up(q) +

Sn fss Up (X*(S, 8n, Bold, d°(8,)]))d Fsif x(d, 8,) is accepted with positive prob-
ability.

To establish the claim made in this step, it will suffice to show that the previ-
ous expression is strictly greater than and bounded away Etgtmax{rp (§),
%(d°(8))}) for 8 close enough to one. Suppose the contrary. Then there must exi:
a sequence of PBEs &%, (8,) such thas, converges to one&l®(8,,) converges
to somed® > d, and lim_«[(1 — 80)Up(Q) + 8n J2 Up(max(rs(sn), t*(s,

pold, d°Gn)DHdFs] < Up(maxr, X(d%)}). The functions{Up (maxrs(sn),
t*(s, Bol[d, d°(sn)D})}, are bounded, measurable, and converge to
Up(max(r, t*(s, Bo[d, d°D}). So, it must be that

/ Up(max(r, t*(s, fold. d°)))d Fe] < Up(maxir, x(d*)).

To see that this in fact cannot be the case, choode<al and ad® > 0
such that®(8) > d° in any PBE ofl'p(8) for § > §. Becausd* is continu-
ous and*(§, Bp[d, d]) > r, there exists § > 0 such that*(s, 8p[d, d°]) >
t*(s, Bo[d, d]) > t*(5 — &, Bp[d,d]) > r forall s > § — &, where the first
and second inequalities reflect the facts tds nonincreasing i® and non-
decreasing irs. Lemma 1A implies furthet*(s, Bp[d, d°]) > X(d°). Thus,
max(r, t*(s, Bpo[d, d°])} > max(r, X(d°)} with the inequality being strict for
se[5—¢,5]aslongas > §. So

/ Up(maxir, t*(s, Bold. d°))}d Fs > Up(maxtr, X(d))).

This contradiction establishes the claim.
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Step4. If there are two distinct demangse., if x(d, 8§) # x(d, 8), thend
strictly prefers to deviate to (xl, §) for § close enough to oné&uppose the
contrary. Then there exists a sequence of PBE%@8,) such thas,, converges
to one andk(d, 8,) # x(d, 8n).

Step 2 impliesd®(8,) converges to somd® > d. Step 3 ensures that there
exists a < 1 and are > 0 such thatl®(§,)’s payoff to demanding(d, §,) is
atleasUp(max{rp(8n), x(do(an))})+e Butd®(8n) never imposes a settlement
if it demandsx(d, 8,), sod can costlessly mimic°(s,). Thusd’s payoff to
demanding(d, é,) is at leastUp (maxrp (5n), X(d(8n))}) + €.

Lemma 1 implies that the best ttdatan do by demanding(d, 8,) is bounded
above byUp(maxrp(8n), 2(8n)}), wherez(8,) solvesUs(1 — z(8,)) = (1 —
§)Up (@) + 8,Up(X(d°(8n))). Incentive compatibility then necessitates
Up(max(rp(8n). 2(8n)}) = Up(max(rp(8n), X(d°(8n))}) + €. As 8, goes to one,
the left side becomes arbitrarily closedg (max(r, X(d°)}) and the right side ap-
proached)p (max(r, X(d°)}) + €. The previous inequality must therefore break-
down for§,, close enough to one. This contradiction mears, §) = x(d, §)
and establishes case (iii).m

Case(ii). t*(5, Bo[d, d] < r. To sketch the intuition underlying the resuilt,
note that anyd can obtain at least)p(rp(§)) by demanding its Rubinstein
sharerp(§) which all s are sure to accept as Lemma 1 shows. Tdissequi-
librium payoff must be at leastip (rp(8)). But this implies that ald cannot
pool on a common demand. If they tried to pool on a nonserious deman
all s counter withrg(8). Satisfied types accept this counter and are left with
(1 - 8)Up(q) + 8Up(rs(8)). But these satisfied types could have done bette
by initially demandingr (8) instead. This contradiction implies that if all of
thed pool on a common demand, this demand must be accepted with a positi
probability. This, however, also leads to a contradiction. If the initial demand i
serious, then its acceptance must ledweith at least as much as it could have
attained by making a nonserious demand and then imposing a settlement.
therefore§ is close enough to one and the initial demand is serious, this dema
must be approximately equal fqd), the certainty equivalent of the toughest
type. S, however, is confident thdd is weak in case (ii) and all the prefer to
reject this large demand in order to counter wilty). The fact that this demand
is sure to be rejected contradicts the assumption that it was serious.

In equilibrium the complete pooling breaks down into partial pooling. The
high-cost types demang, (8), and the othed pool on a common, nonserious
demandx(d, 8). This upper tail is just large enough to ensure that the toughe:
type to demandp (§) is indifferent between demanding (8) andx(d, §). A
uniqued satisfies this requirement and pins down the equilibrium.

Proof of Propositior8. Letrs(8) andrp (8) denote the probabilities of break-
down in any PBE ofl"s(8) andI'p(8), respectively. Recalling that the prob-
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ability that D will reject an offer ofx is Fp(p — Up(X)). Then,ws(8) =

J3 Fo(p — Up(x*(s. 8, Bold. d])))d Fs.

" In case (i) of Proposition 2, adl offer the certainty equivalent of the toughest
type inI's(8) and the probability of breakdown is zero. Thatigs, p[d, d]) >
t*(s, Bpld. d]) = X(d) > r. So,x*(s, 8, Bp[d. d]) = X(d) andzs(8) = 0 fors
close enough to one.

InT'p(8), § can be chosen close enough to one to ensure that for any arbitraril
smally, t*(s, Bo[d + n,d] > rs(8) and alld € (d + », d] pool on a common
demand. Thex*(s, 8, Bo[d + 1, d]) = t*(s, Bo[d + 7, d]). Accordingly, the
probability of breakdown i$'p(8) is bounded above byp(n) = fss Fo(p —

Up (t*(s, Bold+ 1, d])))d Fs+ Fp(d + 1), where the last term is the probability
that alld in [d, d + »] impose a settlement and the first term is the probability
of breakdown given that the common demand of thetfn, d] is rejected for
sure.

To establish the claim, it will suffice to show that the upper botipd)) goes

to zero as) goes to zero. Taking this limit gives limo7p(n) = jss Fo(p —

Up (t*(s, Bold, d])))dFs. But, t(s, Bo[d, d]) is d’s certainty equivalent, so
Fo(p — Un(t*(s, fold, d]))) = Ofor alls.

In case (i), alls offer rs(8) in T's(8) if § is sufficiently close to one, so
7s(8) = Fp(p — Up(rs(8))). To establish this, observe thats, gp[d, d]) <
r implies that there exists & < 1 such thatrs(8) < x*(s, 8, 8p[d, d]) <
X*(8,8, Bp[d, d]) = maxrs(s), t*(S, Bp[d, d])} = rs(8) whenevers > .
Thus,x*(s, 8, Bp[d, d]) = rs(8) for all s, and the probability of breakdown is
Fo(p —Uo(rs(®)))- o

InTp(8), [d, d(8)) pool on a nonserious demand, gdds), d] demand p (8)
which is accepted with probability one. So,

JTD(5)=/ Fo(p— Up(X*(s, 8, Bo[d, d(8)]))dFs.

S

Taking the limit as§ goes to one gives

5
(D) = / Fo(p— Up(X*(s, 8, Bold, d(1)]))dFs.

S

But, d(8) solves

Up(rp(8) = (1 —-8)Up(q) +3f Up(X*(s, 8, Bold, d($)Dd Fs(s).

Taking the limitleave§lp (r) = f:UD(x*(s, 1, Bo[d, d(1)])d Fs(s). Given that
x*(s, 1, Bp[d, d(l)]) > r, X* is continuous, and thats > 0 fors < s < §,
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the previous equality can hold onlyxf (s, 1, Bp[d, d(1)]) =r for all s. Thus,
7p(1) = Fp(p — Up(r)) = ms(1), implying that the difference betweery(§)
andrnp (§) can be made arbitrarily small.

Turning to case (iii), if the common demand is not serious, thes edject
x(d, 8) and counter withx*(s, 8, Bp[d, d]). ws(8) andrp (8) are identical.

Suppos&(d, §) is serious. Le§ be the type whose optimal take-it-or-leave-it
offer t* is d's certainty equivalentt*(3, 8p[d, d]) = %(d). (If no such type
exists, defined to be 5.) Becauset* is nondecreasing is, all s > § offer
X(d) in 's(8) and reach agreement with probability one. This leavg$) =

J5 Fo(p—Up(x*(s, 8, fold, d])))dFs.
Now take$(8) to be the infimum of the set agfthat accepk(d, ) in I'p (§).
Then alls > §(8) accept, leaving

) )
mp(8) =/ Fpo(p — Up(X*(s, 8, Bpld, d])))dFs.

To show thatrws(§) — 7mp(8)| can be made arbitrarily small by takidgclose
enough to one, it suffices to show tl&g8) can be made arbitrarily close &dor
8 sufficiently close to one.

Suppose the contrary. Then there is a sequence of PBEg @f) with §,
converging to one such théfs,) converges to & < § andx(d, 8,) converges
to somex®. (§ cannot be greater th&because any > 3 will avoid an imposed
settlement in botH's(8) andI'p(8)). Sincex(d, 8,) is seriousd’s payoff if
X(d, 8,) is accepted must be atleast as large as its payoff to imposing a settlem
in the second periodip (x(d, 8,)) > (1—-8,)Up(q) +8,Up (X(d)). This leaves
x® > %(d) and, accordinglyUs(1 — %(d)) > Us(1 — x%). Furthermores’s
acceptance fos > §(8) impliesUs(1 — x(d, én)) > (1 — 8,)Us(b — q) +
80T (X*(8(8n), 8n, Bold. d]), 8(8n), Bold, d]). Lettings, go to one leaveld s(1—

x%) = T(x*(8, 1, Bold, d]), $, Bo[d. d]).

Becaus& < §, these types’ optimal offers differ. To see this, observe tha
the definition ofs means that* (8, Bp[d, d]) is less than the certainty equivalent
of d. Consequently, an offer af (8, Bp[d, d]) entails some risk of breakdown,
and the envelope theorem shows tttais strictly increasing irs in these cir-
cumstances. Thus*(8, Bo[d, d]) < t*(3, Bo[d, d]). The conditions defining
case (jii) also ensur¢“(S, Bpld, d) > r. Accordingly, x*(§, 1, Bp[d, d) =
maxr, t*(8, old, d])} < maxX{r, t*(3, Bp[d. d])} = x*(3, 1, Bp[d, d]).

Since x* is the unique offer that maximizeb and $ could offer&'’s opti-
mal offer, the fact tha's and &'s optimal offers differ implies thaé must
strictly prefer to offerx*(8, 1, Ap[d, d): T(x*(8, 1, Bold. d]), $, Bold. d]) >
T(x*(8,1, fold, d]). §, Bo[d, d]). Thus,Us(L — x°) > T(x*(8, L, fp[d. d]),
év IBD[Q’ d])

The fact thag < §also means thafs cost of imposing a settlement is strictly
lessthaig's costand, thereforé's payoff to making any offeris atleastas large as
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§'s payoff to making this offer. Accordingl¥f, (x*(3, 1, Bo[d, d]), §, Ap[d, d]) >
T(x*(3, 1, Bo[d, d]), 8, Bo[d, d]). Moreover,§'s maximum payoff is at least
Us(1 — X(d)) which § could obtain by offeringk(d). Combining the bounds
onUs(1 — x% leavesUs(1 — %(d)) > Us(1 —x% > T(x*(, 1, Ao, [d, d]), §,
Bold. d]) = T(x*(5, 1, Bold, d]). 3, Bold, d]) > Us(1 — X(d)). This contra-
diction ensure$rs(8) — mp(8)| can be made arbitrarily small. m

Proof that the probability of breakdown is nondecreasingdn-r | if the bar-
gainers are risk neutralor if they have identical utility functions and the Nash
bargaining solutionr, equals%. Typed rejectss's initial offer x*(s, 8, Bp[d, d])
if p—d > Up(x*) so the probability that this offer is rejected i (p —

Up (x*(s)). Thus the probability tha®'s initial offer is rejected and that bargain-
ing breaks downig = fss Fo(p—Up(x*(s)))d Fs. To see ifr is nondecreasing
in|p —r|, assumep > r. Then it will suffice to show that the probability that
anys’s offer is rejected is nondecreasingpnThere are three cases to consider.

First, suppose thats optimal offer atp is the corner solution*(s) = X(d).
This offer is sure to be accepted, because it is the certainty equivalent of th
toughest types might be facing. Consequently, the probability teatoffer is
rejected is zero and cannot decrease axreases.

Assume now that’s optimal, unbounded take-it-or-leave-it offgks) at p is
strictly less than its Rubinstein shaigs). Continuity ensures that ff increases
slightly to somep’, s's optimal unbounded offer will still be less thag(s). Thus,

s offers x*(s) = max{rs(3), t*(s)} = rs(8) at bothp and p’. The probability
that this offer is rejected iBp (p — Up(rs(8))) at pandFp(p’ — Up(rs(8))) at

p’. The latter probability is at least as large as the former, so the probability tha
s's offer is rejected is nondecreasingjin

Finally, assumes(d) < t*(s) < X(d). Thens's optimal bounded take-it-or-
leave-it offerx*(s) equalst*(s). Furtherx*(s) = t*(s) maximizesT (s) and so
satisfies the first-order conditions:

Fo(p—Uo(X*) _ Us( —x*)
1-Fp(x*) [Us(=x9) — (1 - p—9)]Up(x")

The probability that’s offer x*(s) is rejected isFp(p — Up(X*(s))) and this
probability is nondecreasing ipif p — Up(X*(S)) is hondecreasing ip. Dif-

ferentiating implicitly with respect t, solving ford(p — Up (x*(s)))/dp, and
recallingFp has a monotone hazard rate show the sigi(@f— Up (X*(s)))/dp
to be the same as the sign of

Udd-x  Ugx U1 —x) — Up(x)
Usl—x) UpXx) Usdl-=x)—(1—-p-59)

2

X=X*

This expression is easy to sign in two circumstances. Fir&,ahd D are
risk neutral, then this expression equals zero. (The normalizatiog ehdUp
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impliesUp, = Ugif SandD are risk neutral.) Accordingly, the probability that
s's optimal offer will be rejected is independent pf Thus, the probability that
anys’s offer will be rejected is a nondecreasing functionpoih all three cases
as long as the bargainers are risk neutral prdr.

The expression in (2) is also easy to sign if the bargainers are risk averse ¢
the bargaining problem is sufficiently symmetric. Suppose that the bargaine
have identical utility function&) and the Nash bargaining solution is to divide
the total benefits in half. = % Then the expression in (2) is nonnegative if

the discount factor is close enough to one. To see this, note that at ae_ﬂ)é,
Us(1—x"/UL(x*) = U'(1—x*)/U’(x*) > 1. Accordingly, (2) is strictly greater
than zero if the bargainers are risk averse ghd % Continuity then ensures
that there is am > 0 such that (2) is positive ¥* > % — e. Now choosé close
enough to one to ensurg(d) > r — e = 1 — . Then,x* > 1 — ¢ because*
is bounded below bys(8). Hence,p — Up (x*) is increasing it* < X(d), and
the probability of breakdown is nondecreasingoiin this symmetric case.

The preceding has been based on the assumptiop that. If p < r the prob-
ability of breakdown is still nondecreasingip—r | if the bargainers are risk neu-
tral or if the problem is symmetric. With < r, D is satisfied. Thatisp < r im-
pliesp—d < p <r < Up(r), wherethe lastinequality follows from the concav-
ity of Up. Thus,p—d < Up(rs(8)) for § close enough to one. [ is sufficiently

small, S becomes the potentially dissatisfied bargainer if there is one, and tt
probability of breakdown becomeas= jss Fs(p'—Us(x*(d, 8, B4[s, §])))d Fp,
wherex*(d, 8, Bs[s, 3]) is the share offerstosandp’ = 1— pis the probability
that S will win all of the benefits in the event of an imposed settlement. With
p < r, showingr to be nondecreasing {p — r | is equivalent to demonstrating
that it is nonincreasing i or nondecreasing ip’. So, it will suffice to show
that the integrand is nondecreasingoinBut this follows analogously from the
argument showing thqgS Fo(p—Up(X*(s, 8, Bo[d, d])))d Fsis nondecreasing

in p.

Unfortunately, it is not always the case that the probability of breakdown i
nondecreasing irp and consequently in the disparity. To sketch an example
in which the probability of breakdown is decreasing over a range of values «
p, supposeD and S have a constant level of risk aversiarand letUp (x) =
(1—e /(1 —-e*) andUs(1 — x) = (1 — e *@™)/(1 — e™*). Substituting
these functions into (2) and taking the limibeisgoes to zero give2— a/(p+S)
which is negative ifp + s < % This suggests that the probability of breakdown
may decrease ap increases ifD is weak, i.e.,p is small, and the optimal
offer, x*, is also small. Indeed this turns out to be the case. For example, |
o =1,s=014d = 005 d = 001, andfp(d) = 2(d — d)/(d — d)2
Then,d(Fp(p — X*(s, 8, Bp[d, d])))/dp < 0 at p = 0.2. So, the probability
of breakdown is decreasing pt= 0.2 if the typesS are distributed in a small
neighborhood of 1. m
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