
APPENDIX 

Some introductory notes on game theory 
I 

I 

I 
The mathematical analysis in the preceding chapters, for the most part, 
involves nothing more than algebra. The analysis does, however, appeal to 
a game-theoretic vocabulary and set of concepts that may be unfamiliar. 

I This Appendix introduces those concepts and vocabulary in order to give 
readers with little or no background in game theory a better sense of the 
tools used to analyze deterrence theory and some of the strengths and 
weaknesses of those tools.' 

The extensive form 
I 

The brinkmanship and limited-retaliation models are examples of games in 
extensive form. A game in exten.siveJi,rm is composed of two parts.' The 
first is the gume,form or game tree. The second is the players' payoffi The 
game form or tree is an abstract summary of the situation facing the 
players. The tree tells the order of play, the set of alternatives from which 
each player must choose when it plays, and what each player knows when it 
must choose. The tree defines who moves after whom, what each player can 
do, and what each player knows about what the other players have done 
when it must decide what to do. 

Two very simple trees are illustrated in Figure A l .  In both Figure At(a) 
and Al(b) the order ofplay is the same. Player I moves first, and then player 
11 moves. When I moves, the trees show that it can choose between two 
alternatives: It can choose up, U, or down, D. Similarly, II has only two 
alternatives: top, T, and bottom, B. The trees also define what I1 knows 
when it must decide between T and B. In Figure Al(a), I1 is assumed to 
know what I did, perhaps because II could watch I. In Figure Al(b), 
however, IIdoes not know what Idid. This is the meaning of the dashed line 
connecting If's two decision nodes in Figure Al(b). Of course, II may have 
beliefs about whether it is at its upper or lower decision node, and more will 
be said later about beliefs and their formation. At this point, it is important 

' For an excellent though somewhat more technical introduction to game theory than the 
one presented here, see Tirole (1988, pp. 423-59). 
For a formal definition, see Luce and Raiffa (1957), Owen (1982), Selten (1975), or Kreps 
and Wilson (1982b). 



to note that only the tree in Figure Al(b) is intended as a model of a 
situation in which 11 must decide what to do without knowing what I has 
done. There is simply not enough information. 

If a player is unable to distinguish between some of its decision nodes, 
then these indistinguishable nodes constitute an information set. In Figure 
Al(b), 11 has one information set because its two decision nodes are 

I 
indistinguishable. But in Figure Al(a), 11 can distinguish between its two I 

decision nodes because it knows what Idid when it has to decide what to do. 
11, therefore, has two information sets in this tree, each composed of a single I 

node. In both Figure Al(a) and Al(b), I has a single information set 
consisting of a single decision node. 

If, as in Figure Al(a), every information set consists of a single decision 
node or singleton, so that a player at any information set knows exactly 
what alternatives the other players have previously played, then the game 
has perfect information. Chess is a game of perfect information. Whenever a 
player must decide what to do in chess, it is completely certain ofwhat all of 
the preceding moves have been. That is not the case in the tree in Figure 
Al(b), where 11 does not know what I has done. 

The terminal nodes of a tree are the points at which a path through the 
tree ends. In Figure Al(a) and Al(b), for example, there are four terminal 
nodes, each of which follows one of the four branches that Il's decision can 
take. The terminal nodes correspond to the possible outcomes of the game. 

The game tree abstractly defines the situation in which the players must 
act. Each path through the tree leads to a terminal node that is associated 

Figure A 1. Some simple game trees. 
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with some possible outcome. But to have any hope of analyzing what will 
be done in this situation, more than the structure of the situation must be 
described; the players' preferences over the possible outcomes must also be 
defined. This is the second part needed to complete the specification of the 
game. That is, each player associates with each possible outcome apayoffor 
utility that reflects its preferences over the set of possible  outcome^.^ 

Three examples will make this description more concrete. The first is the 
game of chicken. There are two players: I and II. Each player has two 
alternatives: It can stand firm, F, or submit, S. The decision whether to 
stand firm or submit is made in ignorance of what the other player is doing. 
The game tree in Figure A2(a) illustrates this situation. The tree begins with 
I having to decide between F and S. 11 must then decide between F and S. 
The tree also models the assumption that neither player knows what the 
other player is doing when it must decide what to do. I clearly cannot 
determine what 11 has done when I is making its decision, because the 
information set at which this decision is made precedes the information set 
at which 11 makes its decision. Similarly, 11 does not know what I is doing 
because both of Il's decision nodes are in the same information set, and, by 
definition, a player cannot distinguish among the nodes in any one of its 
information sets. 11 cannot tell if it is at its upper node, in which case I is 
standing firm, or if it is at its lower node, in which case Iis submitting. In the 
tree, both players make informationally isolated decisions; each player 
must decide what to do without knowing what the other player is doing. 
One natural interpretation of this informational isolation is that the tree is 
a model of a situation in which decisions are made simultaneously. That is, 
in the actual situation for which Figure A2(a) is a model, Iand IImake their 
decisions to stand firm or submit simultaneously. Simultaneity, in turn, 
implies that no player can know what the other is doing when it must decide 
what to do. In this way, simultaneity makes for informationally isolated 
decisions, and that is what is modeled in the tree in Figure A2(a). 

To complete the specification of the game ofchicken, the players' payoffs 
or preferences over the possible outcomes of the game must be specified. If 
one player stands firm and the other submits, then the player who stands 
firm wins, and the other loses. If both stand firm, there is a disaster that is 
worse than losing. If both submit, a compromise results that is better than 
losing, but not as good as prevailing. Picking numbers to represent these 
payoffs, suppose that if one player stands firm and the other submits, then 
the player who stands firm receives 1, whereas the player who submits loses 

Usually, utilities are assumed to be von Neumann-Morgenstern utilities. That is, the utility 
of an uncertain event is the expected utility of the possible events. For example, the utility 
of a lottery that will give utility u, with probability p and utility u, with probability 1 -p is  
PU, + ( I  - pb2. 



1. If both players stand firm, both lose 5. If both submit, then each obtains 
the compromise payoff of zero. Thus, the payoffs at the end of the branch 
along which I plays F and II plays S are (1, - I) ,  where the first element in 
the pair of payoffs is I's payoff, and the second is II's. The complete 
specification of the game is given in Figure A2(b). 

I 

The second example is the game of matching pennies. In this game, two 
players act simultaneously, and each reveals one side of a penny. If both I 
players show heads or tails, player I wins and collects a penny from II. If 
one player shows heads and the other tails, then 11 wins and takes a penny 

I 
from I. The extensive form of this game is depicted in Figure A3. I begins by 
making an informationally isolated decision between heads, H, and tails, T, 
after which 11 makes an informationally isolated decision between Hand T. 
If I and II play the same face, the payoffs are (1, - 1) and if they make 
different choices, the payoffs are ( -  1, I). 

I 

Finally, consider a more complicated game that is a much-simplified 
version ofpoker. In this game, one card is dealt to player I, and another card I 

I 

is dealt to II. Each player can see only the card dealt to it. Then, knowing its 
card, but not its opponent's, I must decide whether to bid a dollar, B, or I 
fold, E If I folds, it loses its ante of one dollar to II. If I bids, II must either 
bid a dollar or fold. If II folds, I collects II's ante of a dollar. If II bids, then 
both players expose their cards. If both cards are of the same color, the 
players divide the pot, which leaves a net gain of zero. If the colors differ, 
then black beats red, and the player holding the black card collects the pot 
of four dollars for a net gain of two dollars. 

Figure A2. Chicken in extensive form. 

Some introductory notes on game tneory 171 

Figure A4 shows the extensive form of this simple poker game. A player 
called "Nature" or N makes the first move. Assuming there to be a player 
called Nature is simply a modeling device used to introduce random or 
probabilistic elements into the game. For example, four combinations of 
colored cards could be dealt in the game, (B, B), (B, R), (R,  B), (R,  R), where 
the first element of the pair corresponds to the color of 1's card, and the 
second element is the color of II's card. To represent this in the game, 
Nature begins the game by playing one of the four alternatives, where each 
alternative corresponds to one possible deal. With a very large deck, the 
probability of dealing one of these combinations will be a, and so Nature 
will play each of these alternatives with probability a. 

After N plays, I must decide whether to bid or fold. When making this 
decision, I knows the color of its card, but not the color of its opponent's 
card. Accordingly, I cannot distinguish between a deal of (B, B) and (B, R) 
or between a deal of (R, B) and (R, R). This means that I has two 
information sets, with the nodes representing the deals (B, B) and (B, R) in 
one information set, and the nodes representing the deals (R,  B) and (R,  R) 
in the other. At these information sets, I has two alternatives: bidding, B, or 
folding, E If it folds, the game ends, and the payoffs are (-  I, 1). If I bids, II 
must then decide whether to bid or fold. II, like I, knows only the color of its 
card and consequently cannot distinguish between the deals of (B, B) and 
(R,  B) or between the deals of (B, R) and (R,  R). II, therefore, also has two 
information sets, as shown in Figure A4. If II folds, the payoffs are (I ,  - 1). 
If 11 bids, the players expose their cards and obtain the payoffs described 
earlier and illustrated in Figure A4. 

Figure A3. Matching pennies. 
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Strategies and the normal form 

Now that a game has been described, one can begin to discuss ways of 
analyzing it. The first step is to define what is meant by a player's behavioral 
strategy. A player's behavioral strategy is simply a complete plan for how 
this player will play the game. This strategy tells what this player will do in 
each contingency that might arise in the game. More formally, a player's 
behavioral strategy is a rule that specifies which alternative this player will 
select at each of its information sets. If, as in the games of chicken or 
matching pennies, a player has a single information set, then a player's 
behavioral strategy merely tells what this player will do at this one 
information set. In matching pennies, a strategy for I is  to play H. A second 
strategy for I would be to play T. In the simple poker game in Figure A4, 
each player has two information sets. Accordingly, a player's behavioral 
strategy must specify what the player will do at both ofits information sets. 
A behavioral strategy for I is "fold if I's card is red, and bid if the card is 
black." The instruction "fold if I's card is red" cannot be a behavioral 
strategy for I, for it is not a complete plan for playing the game; it does not 
specify what I is to do if it is dealt a black. 

Figure A4. The extensive form of the simple poker game 
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It will be useful to distinguish between pure behavioral strategies and 
mixed behavioral strategies. In a pure strategy, the rule defining a player's 
strategy specifies that the player is certain to choose a single alternative at 
each of its information sets. In a mixed strategy, a player is allowed to 
randomize over the alternatives from which it must choose. That is, the rule 
defining a player's mixed behavioral strategy specifies a probability 
distribution over the set of alternatives at each of this player's information 
sets. This distribution gives the probability that any of the alternatives 
available at a given information set will be played. In matching pennies, for 
example, I has two pure strategies. It can play H for sure, or it can play Tfor 
sure. A mixed behavioral strategy for Iin this game would be to show heads 
with probability 4 and tails with probability 4. A second mixed behavioral 
strategy would be to play H with probability $ and Twith probability 3. In 
the simple poker game, a pure behavioral strategy for I would be to "bid 
regardless of the color of I's card." A mixed behavioral strategy would be to 
"bid with probability 2 and fold with probability a if I's card is black, and 
bid with probability 2 and fold with probability 8 if I's card is red." 

The use of pure behavioral strategies makes it possible to define the 
normal form of a game, which is more compact and sometimes more useful 
in analyzing the game than the extensive form. Suppose that there are M 
players in some extensive-form game. Let si be some pure behavioral 
strategy for player i. That is, si is a rule that tells which alternative iis certain 
to play at each of its information sets. Now consider the m-tuple (s,, s,, . . . , 
s,), where each si in this m-tuple is a complete plan for how player i will 
play the game. This means that (s,, s,, . . . , s,) describes what will be done at 
every information set in the game. Accordingly, one can imagine giving the 
plan (s,, s,, . . . ,s,) to a referee and then having the referee play out the 
game according to the players' strategies. If, for example, the first 
information set in the tree belonged to player i, then the referee would 
consult si in (s,, s,, . . . , s,) to see which alternative i would choose at that 
information set. The referee would then follow the branch in the tree 
corresponding to that alternative and go down the tree to the next 
information set. If that set belonged to k, the referee would consults, to see 
what s, would have k do at that information set. In that way, the referee 
could follow the plan defined by ( s , ,~ , , .  . . ,s,) and eventually reach a 
terminal node that would mark the end of the game. Put another way, the 
plan (s,, s,, . . . , s,) defines a path through the tree, or, if Nature is making 
random moves in the tree, the plan defines the probability of reaching each 
possible terminal node or outcome of the game. Now recall that each player 
attaches some utility to every possible outcome of the game. If, therefore, a 
plan like (s,, s,, . . . , s,) defines the probabilities of reaching the possible 
outcomes, then each player can attach an expected utility to the plan. That 
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is, each player knows what its expected utility will be if the game is played 
according to the plan (s,, s,, . . . , s,). Let U,(s,,s,, . . . ,s,) be the utility 
player i receives if the game is played according to (s,, s,, . . . , s,). Now, the 
game can be described by the set of all possible plans (i.e., the set of all 
possible m-tuples of pure behavioral strategies, and the utility functions 
that specify the utility the players receive if the game is played according to 
a specific plan). This description is the normal form of the game. 

To make this description of the normal form more concrete, the 
extensive-form representations of the games of chicken, matching pennies, 
and poker will be translated into their normal forms. In chicken and 
matching pennies, each player has two pure behavioral strategies. This 
means that there are four different plans for playing the game. One way to 
keep track of these plans is with a matrix, where each row corresponds to 
one of player I's strategies, and each column corresponds to one of 11's 
strategies. Each cell in the matrix then corresponds to a different 
combination of I's and II's strategies or, in other words, to a different 
complete plan for playing the game. The utility each player receives if the 
game is played according to a particular plan is placed in the cell associated 
with that plan. The normal form for chicken is shown in Figure A5(a), and 
that for matching pennies in Figure A5(b). 

To translate the simple poker game into its normal form, note that I has 
four pure strategies. One strategy is to bid if a black card is dealt and to fold 
if a red card is dealt. Let {(B, b), (R, f ) )  denote this strategy, where the first 
element in a parenthetical pair stands for the color of the card that may be 
dealt, and the second element tells what to do if this color is actually drawn; 
so (B, h) means bid, b, if a black card, B, is dealt. Then the other three 
strategies are {(B, b), (R, h)}, {(B, f), (R, h)), and {(B, f), (R, f)) .  Player I1 also 
has the same four strategies. It can bid or fold depending on whether it has a 
red or black card. Because each player has four strategies, there are sixteen 
different combinations of strategies (i.e., sixteen different complete plans for 

Figure A5. The normal forms of chicken and matching pennies. 
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playing the game). As before, one can keep track of these different 
combinations in a matrix, where each row corresponds to one of I's 
strategies, and each column corresponds to one of II's strategies. This is 
done in Figure A6. 

As an example of how the payoffs are calculated, consider the cell 
associated with 1's strategy of bidding if it has a black card and folding if it 
has a red card, which is denoted {(B, h), (R, f)), and with Il's strategy of 
folding with a black card and bidding with a red card, which is given by 
{(B, f), (R, h)). This corresponds to the cell at the intersection of the second 
row and the third column, where the payoffs are (2, -a). To derive these 
payoffs, suppose that Nature deals a red card to I and a red to II; then play 
follows the branch (R, R) in the extensive form in Figure A4. Given that I is 
holding a red card, its strategy is to fold. The game ends with payoffs 
( -  1,l) .  Now suppose that Nature deals a black card to I and a red card to 
II. Play then proceeds down the (B, R) branch. I's strategy is to bid. Because 
IIis holding a red card, it also bids. Because black beats red, the payoffs are 
(2, 2 ) .  If Nature had dealt two black cards, I would have bid, but 11 would 
have folded, leaving the players with (1, - 1). Finally, a deal of red to I and 
black to I1 has I folding immediately, to give the payoffs ( -  1,l). Because 
Nature will deal each of these combinations with probability $, the expected 

Figure A6. The simple poker game in normal form. 
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payoff to I from this combination of strategies is (a)(-  1 )  + (6)(2) + (a)( l )  + (a)(-  1 )  = +. Similarly, Il's expected payoff is ( * ) ( I )  + ($)(- 2) + (a)(- 1 )  + 
( + ) ( I )  = -+. The payoffs for the other cells are calculated in the same way. 

Best replies and Nash equilibria 

The notion of a player's best reply or best response is crucial to defining a 
game's Nash equilibria. Continuing to work with the normal form, suppose 
that there are M players. Viewing the game from player i's perspective, the 
plans of the other players, which are denoted by s - i  = (s,,s,, . . . ,si- 
si+ ,, . . . , s,), give almost a complete plan for playing the game. It tells 
how every player other than i will play. Then, a best reply for i to xi is a 
strategy that gives i its highest payoff given that the other players are 
playing according to s-,. If, for example, II's pure strategy is to stand firm 
in the game of chicken in Figure A5(a), then I's best reply is to submit. This 
strategy leaves I with - 1, whereas standing firm would give -5. 
Sometimes a player has more than one best response. If I's strategy in the 
simple game of poker in Figure A6 is always to bid, that is, to play {(B,  b), 
(R, b)),  then 11 has two best replies. Always bidding or bidding only with a 
black card, that is, {(B,  b), (B, b))  or {(B, b), (R, f ) ) ,  will yield 11 its highest 
payoff of zero given that I is following the strategy of always bidding. (This 
can be seen easily by looking across the row associated with I's strategy of 
always bidding. In this row, the highest payoff IIcan attain is zero, and any 
column or strategy that gives 11 this payoff is a best reply.) In sum, a player's 
best reply to a combination of the other players' strategies is a strategy that 
will maximize this player's payoff given that the other players are following 
this combination of strategies. 

A Nash equilibrium of a game is a complete plan for playing the game 
such that each player's strategy is a best reply to the other players' 
strategies. That is, the combination (ST, s:, . . . , s&) is a Nash equilibrium if 
ST is a best reply to s? , for every player i. A reason for calling a combination 
of strategies that has this property an equilibrium is that no player has an 
incentive to change what it is doing by following some other strategy. 
Player i has no incentive to deviate from ST given that the other players are 
following sTi, because ST is a best response to sTi, and, by definition, a 
player's best reply to a combination of strategies maximizes its payoff given 
that the other players follow this combination of strategies. If, however, a 
combination of strategies, say (s;, s;, . . . , s',), did not satisfy the Nash 
property that every player's strategy is a best reply to the other players' 
strategies, then there would be at least one player, say k, such that s; would 
not be a best reply to s'-,. Thus, k could increase its payoff by deviating from 
s; by actually playing a best reply to L,. In brief, no player has an incentive 
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to deviate from its strategy if and only if the strategies form a Nash 
equilibrium. 

The game of chicken in Figure A5(a) has three Nash equilibria. In the 
first, I stands firm, and 11 submits. This combination of strategies 
corresponds to the cell in the upper-right corner. Clearly, I has no incentive 
to deviate from F by playing S,  for 2's payoff to playing S, given that II is 
playing S, would drop from 1 to 0. Similarly, 11 has no incentive to deviate 
from S given that I i s  playing F, for if it played F, its payoff would fall from 
- 1 to - 5. In the second equilibrium, 11 stands firm, and I submits. This is 
the combination at the lower left. As in the previous case, no state has an 
incentive to deviate from its strategy. 

The third equilibrium involves mixed strategies. Suppose that each 
player will stand firm with probability 0.2 and submit with probability 0.8; 
then each player's strategy is a best response to the other's, and therefore 
this combination is a Nash equilibrium. To see that I's strategy is a best 
reply to II's, calculate I's expected payoff to standing firm: This is I's payoff 
if both I and 11 stand firm times the probability that 11 will stand firm plus 
the payoff if I stands firm and 11 submits times the probability that 11 will 
submit. This is 0.2(- 5) + 0.8(1) = - 0.2. Similarly, I's payoff to submitting is 
0.2(- 1 )  + 0.8(0) = -0.2. This shows that if 11 stands firm with probability 
0.2 and submits with probability 0.8, then the payoffs to I of standing firm 
and of submitting are the same. Thus, Iis indifferent to its pure strategies of 
standing firm or submitting. Indeed, I is indifferent among its mixed 
strategies as well, for if I stands firm with probability p and submits with 
probability 1 - p, then its expected payoff will be p times the expected 
payoff of standing firm, which is -0.2, plus 1 - p times the expected payoff 
of submitting, which is also -0.2. This leaves p(- 0.2) + ( 1  - p)(- 0.2) = 

-0.2, regardless of the value of p. In sum, I is indifferent among all of its 
strategies, both pure and mixed. Consequently, all of I's strategies are best 
replies to Il's strategy of standing firm with probability 0.2 and submitting 
with probability 0.8. In particular, I's strategy of standing firm with 
probability 0.2 and submitting with probability 0.8 is a best response to II's 
strategy. 

Just as Il's strategy of standing firm with probability 0.2 left I different 
among all of its strategies, I's strategy of standing firm with probability 0.2 
leaves 11 indifferent to all of its strategies. All of II's strategies are best 
responses to I's strategy. Thus, each player's strategy is a best reply to the 
other's; so the combination of strategies forms a Nash equilibrium. 

In general, a finite game, that is, a game that has finite numbers of players 
and pure strategies, has at least one Nash eq~i l ibr ium.~  But there may 

See Ordeshook (1986, pp. 12G37) and Tirole (1988, pp. 444-5) for a proof of the existence 
of at least one Nash equilibrium in a finite game. 



not be an equilibrium in pure strategies; a Nash equilibrium may exist only 
in mixed strategies. The matching-pennies game illustrates this. No 
combination of pure strategies forms a Nash equilibrium. For example, in 
the combination in which I plays Hand  IIplays T, then, given Il's strategy 
of T, 1's best reply is to deviate from H by playing T. Although there are no 
pure-strategy equilibria, there is a mixed-strategy equilibrium in which 
each player plays H with probability 4. If IIfollows this strategy, then Iwill 
be indifferent between Hand T and all mixed strategies. All of I's strategies 
are best replies, and, in particular, the strategy of playing H with 
probability is a best response. But if I follows this strategy, then II is 
indifferent among all of its strategies. So Il's playing H with probability is 
a best reply. Thus, this combination of strategies is a Nash equilibrium. 

The mixed strategies illustrate an important fact that is useful in find- 
ing the equilibria of the brinkmanship and limited-retaliation models in 
Chapters 3 through 7. If a player is mixing over two strategies in equilib- 
rium, then both of these strategies must be best replies and consequently 
provide the same payoff. That is, if a player i plays a pure strategy s! 
with probability p > O  and another pure strategy sz with probability 
q>O,  then both s! and s' must be best responses, and the utility of play- 
ing s! must equal the utility of playing s:. If these strategies did not yield 
the same utility, then one would be preferred to the other. That is, the 
utility of playing one of the strategies, say s!, would be greater than the 
utility of playing sz. This would mean that the player could increase its 
payoff by deviating from the mixed strategy in which it plays s! with 
probability p and s: with probability q by choosing a strategy in which it 
would play s! with probability p + q  and s; with probability zero. But, by 
definition, no state can improve its payoff in equilibrium by deviating from 
its equilibrium strategy. So it must be that s! and s: yield the same payoff. 
Similarly, these strategies must also be best replies, for if they were not, then 
the player would also be able to increase its payoff by not playing either of 
them, but playing instead a best reply with probability p + q. 

The mathematical appeal of mixed strategies is clear. Without them, 
many games would have no equilibrium. Allowing mixed-strategy 
equilibria assures that an equilibrium exists. But the empirical meanings 
and interpretations of mixed strategies and mixed-strategy equilibria are 
fraught with difficultie~.~ To illustrate some of these, consider the more 
general game of chicken in Figure A7, where the numerical payoffs in 
Figure A5(a) have been replaced by variables. The payoff to standing firm if 
the other player submits is w, the payoff to submitting if the other player 

For further discussion of this and some attempts to justify mixed equilibria, see Luce and 
Raiffa (1957, pp. 74-6), Harsanyi (1973), and Harsanyi and Selten (1988, pp. 14-15). 

stands firm is s, the payoff to the compromise outcome that obtains if both 
players submit is c, and the payoff to the disaster that occurs if both stand 
firm is d. The game will be one of chicken as long as the payoffs satisfy the 
following relation: The payoff to prevailing is greater than the payoff to 
compromising, which is greater than the payoff to submitting, which is 
better than the payoff to disaster: w > c > s > d for both players I and II. 

Now consider the mixed equilibrium in which I stands firm with 
probability 4,  and IIstands firm with probability +,,. To calculate $,, note 
that Il's expected payoff to standing firm is the payoff to its standing firm 
and I's standing firm, d,,, times the probability that I will stand firm, 4,, 
plus Il's payoff if it stands firm and Isubmits, w,,, times the probability that 
I will quit, 1 - 4,. This is dI ,4 ,  + w,,(l - 4,). Similarly, II's expected payoff 
to submitting is s,,4, + c,,(l - 4,). But now recall that because 11 uses a 
mixed strategy in equilibrium, IImust be indifferent between standing firm 
and submitting. (If it strictly preferred one of these alternatives, then it 
could improve its payoff by deviating from its mixed strategy to the 
preferred pure strategy.) Il's indifference implies that the expected payoff to 
standing firm equals the payoff to submitting: d,,$, + w,,(l - 4,) = s,,4, + 
c,,(l - 4,). Solving for the probability that I will stand firm gives 4,  = 

(w,, - cI I ) / [ (wII  - c I I )  + (sII - d,,)].  Similarly, the chances that 11 will stand 
firm are 4x1  = (4 - c,)/C(w, - cx) + ($1 - dI)l. 

The mixed equilibrium has some intuitively appealing properties. One 
would expect a compromise to be more likely the higher the payoff to 
compromise, the greater the cost of disaster, and the smaller the payoff to 
prevailing. The mixed equilibrium conforms to these expectations. The 
chance of a compromise outcome is the probability that both I and 11 will 

Figure A7. A more general game of chicken. 
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Figure A8. The massive-retaliation game. 

USSR 

submit: (1 - 4,)(l- 4,,). This probability increases as the payoff to 
compromise rises or as the payoffs to disaster and prevailing 

But much about this mixed equilibrium is not especially appealing 
intuitively. Note that the probability that I will stand firm, 4,, does not 
depend on I's payoffs, but on II's. Thus, if I's payoff to prevailing increases, 
I's strategy does not change. Rather, II becomes more likely to stand firm; 
4,, rises as w, increases. The mathematical reason for this is that in a mixed 
equilibrium, I's strategy must keep II indifferent between standing firm and 
submitting. If, therefore, II's payoffs do not change, as they do not when 
only I's payoff to prevailing rises, then I's strategy cannot change, for 
otherwise II would no longer be indifferent. Instead, II's strategy must 
change in order to keep I indifferent. A higher payoff to prevailing tends to 
raise I's expected payoff to standing firm. This, however, can be offset and 
I's indifference restored if IIbecomes more likely to stand firm, for that will 
make the prospect of disaster more likely if I stands firm and thus will tend 
to lower I's expected payoff to standing firm.' 

Although the mathematical reasons for these interactions are clear, what, 
if any, empirical interpretation to attach to them is not so clear, and the 
interpretations offered in Chapters 3 through 7 must be treated cautiously. 
One approach to building confidence in any finding is to see if it holds in a 
wide variety of models. This is very much in keeping with the most 
important objective of this volume, which is to articulate a general analytic 

= w - ~ ( 1  - A A J ~ C  > 0; w - ~ A U  - A A I ~ ~ <  0; a u  - ~ A U  - + M W  < 0. 
' This argument does not apply to games with more than two players. In those games, a 

player's mixed strategy may depend on its payoffs. 

perspective on nuclear deterrence theory that will help point the way to 
richer and better models. 

Returning to the extensive form, a Nash equilibrium is a combination of 
behavioral strategies in which each player's behavioral strategy is a best 
reply to the other players' behavioral strategies. This, however, raises a 
question. Does it matter whether one analyzes a game in terms of mixed 
behavioral strategies, in which a player may randomize over the 
alternatives at each of its information sets, or in terms ofmixed strategies, in 
which a player randomizes over complete plans? If the game is one of 
perfect recall, as the games in this volume are, then these two formulations 
are equivalent, and the adjective "behavioral" will generally not be used.8 

Subgarne perfection 

The game in Figure A8(a) is a simple formulation of the doctrine of massive 
retaliation when both the United States and the Soviet Union have secure 
second-strike forces. The Soviet Union begins the game by deciding 
whether or not to challenge the status quo. If there is no challenge, the 
status quo continues, and the game ends with payoffs (0,O). If the Soviet 
Union challenges the status quo, the United States must decide what to do. 
It can either carry out a massive nuclear attack or submit by acquiescing to 
the Soviet challenge. If the United States attacks, the Soviet Union is 
assumed to retaliate in kind. The game ends in a general nuclear exchange, 
with payoffs of (- 10, - 10). If the United States submits, then the United 
States suffers a loss, and the Soviets gain. The payoffs to this are taken to be 
(-838). 

The normal form of this game is illustrated in Figure A8(b). The game 
has two Nash equilibria in pure strategies. In the first, the United States 
plays A, which is a threat to launch a massive nuclear attack if the Soviet 
Union challenges the status quo, and the Soviet Union accepts the status 
quo by playing - C. There is no challenge in this equilibrium. In the second 
pure-strategy equilibrium, the Soviet Union challenges the status quo by 
playing C, and the United States acquiesces with S. 

A game is one of perfect recall if no player ever forgets what it previously knew and did. If 
one thinks of bridge as a two-player game in which each player is playing two hands, then 
bridge is a game in which there is not perfect recall. When a player is playing one hand, it 
cannot "remember" its other hand, which it knew when it was bidding that hand. More 
formally, a game has perfect recall if for any two decision nodes x and y that are in the same 
information set belonging to a player k, if x' is a decision node preceding x that is in one of 
k's information sets, then there must also be a node y' that precedes y and is in the same 
information set as x', and the paths leading from x' to x and from y' toy  must follow the 
same alternatives at x' and y'. For a discussion of perfect recall and of the equivalence of 
these two formulations, see Luce and Raiffa (1957, pp. 159-62) or Selten (1975). 
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Although both equilibria are Nash (i.e., each state's strategy is a best 
response to the other's strategy), the first seems implausible as a solution to 
the game. The American strategy of A seems inherently incredible. If, in the 
tree in Figure A8(a), the United States must actually follow through on its 
threat by playing A, its payoff will be - 10. But if the United States submits, 
it will receive - 8. Assuming that the United States will act to maximize its 
payoff whenever it must actually act, then it will play S rather than A.  
Accordingly, an equilibrium based on the Soviet Union's believing that the 
United States will play A would seem to be an unreasonable solution for the 
game.g 

Much work in game theory has been devoted to refining the notion of an 
equilibrium by imposing additional restrictions on combinations of 
strategies beyond the Nash criterion that each strategy be a best reply to the 
other strategies. These restrictions are intended to exclude unreasonable 
equilibria like the one just examined from the set of acceptable solutions to 
the game. One of the simplest restrictions is to demand that a solution be 
subgame perfect. 

Before defining subgame perfection, a subgame must be described. A 
subgame is piece of a game tree that is itself a well-defined game. To find a 
game's subgames, start with the game's extensive form. Then pick any node 
in the tree and examine that node and all of the nodes in the tree that come 
after it. This set of nodes is informationally isolated from the rest of the tree 
if no information set contains some members of this set of nodes and some 
nodes in the rest of the tree. If this set of nodes is informationally isolated, 
then this set of nodes forms a well-defined game beginning at the original 
node and constitutes a subgame of the original game. 

Consider, for example, the American decision node in the massive- 
retaliation game in Figure A8(a). This decision node and its successors, of 
which there are none, are informationally isolated. No information set 
connects the American node with the rest of the tree. A well-defined, albeit 
very simple, game begins at the American decision node. Accordingly, a 
subgame begins at this node. The tree in Figure A9 provides another 
example. A subgame begins at each of I's decision nodes. For the same 
reasons outlined for the massive-retaliation game, a subgame begins at the 
two nodes where I must choose between Tand B. A subgame begins at l's 
first decision node because every game is a subgame of itself This follows, 

It might at first seem that the United States would have an incentive to deviate from its 
strategy of playing A and thus that the combination of strategies ( A ,  - C )  could not be a 
Nash equilibrium. But if the Soviet Union does play - C, then the American decision node 
in the tree is never reached. Regardless ofwhat the United States would do if this node were 
reached, the United States will receive zero because the Soviet Union does not challenge 
the status quo. Every American strategy is a best reply to the Soviet strategy of not 
challenging the status quo. Thus, there is no incentive for the United States to deviate from 
A if the Soviet Union plays -C.  

I 
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Figure A9. Some examples of subgames. 

rather vacuously, from the definition of a subgame, for the first decision 
node (along with all the nodes that follow it) is informationally isolated 
from the rest of the tree, because there is no rest of the tree. 

But a subgame does not begin at either of II's decision nodes. Il's upper 
node and its successors are informationally linked to the rest of the tree, 
because one of these nodes, Ill's upper node, is in an information set 

I containing nodes in the rest of the tree, namely, IIl's lower node. Thus, 
a well-defined game does not begin at Il's upper node, and so a subgame 
does not begin there. For similar reasons, a subgame does not begin at Il's 
lower node or at either of IIl's decision nodes. 

Given this description of a subgame, a subgame perfect equilibrium can be 
defined. A combination of strategies forms a subgame perfect equilibrium if 
the strategies form a Nash equilibrium in every subgame of the original 
game. In effect, requiring an equilibrium to be subgame perfect means that 
no player can threaten to play a strategy that is inherently incredible in the 

I sense that this player has an incentive to deviate from this strategy in some 
subgame. A player cannot threaten to do something in a subgame when 
doing something else in that subgame would make the player better off. The 
strategy embodying such a threat would not be Nash in this subgame and 
so could not be part of a subgame perfect equilibrium. In this way, focusing 
on subgame perfect equilibria eliminates some unreasonable equilibria.'' 

! l o  Because every game is a subgame of itself, and a subgame perfect equilibrium is Nash in 
every subgame, a subgame perfect equilibrium is also a Nash equilibrium. This means that 
the set of subgame perfect equilibria is a subset of the set of Nash equilibria. 



To show that looking for subgame perfect equilibria eliminates the 
unreasonable equilibrium in the massive-retaliation game, first note that 
there are two subgames of this game. The first is the game itself, and the 
second is the subgame beginning at the American decision node. Now 
consider the strategy (A, -C), in which the United States would attack if 
the Soviet Union challenged the status quo, but the Soviet Union does not 
dispute the status quo. As shown earlier, this set of strategies is a Nash 
equilibrium in the original game and therefore is also Nash in the first 
subgame. But this combination of strategies is not Nash in the subgame 
beginning at the American node. In this very simple subgame, the United 
States has an incentive to deviate from A. Playing A will give - 10, and 
playing Swill bring - 8; the United States' best reply is to submit. Because 
the combination of strategies (A, -C) is not Nash in all subgames, it is not a 
subgame perfect equilibrium. Thus, looking for subgame perfect equilibria 
rather than simply Nash equilibria will exclude the unreasonable 
equilibrium in the massive-retaliation game. 

The other equilibrium of the massive-retaliation game, (S, C) is, however, 
subgame perfect. As demonstrated previously, this combination is Nash in 
the first subgame of themassive-retaliation game. It is alsoNash in the second 
subgame. In the subgame beginning at the American node, the United 
States has no incentive to deviate from its strategy of S. 

In sum, analyzing a game in terms of subgame perfect equilibria rather 
than solely in terms of Nash equilibria helps to eliminate some unreas- 
onable Nash equilibria that seem to be based on inherently incredible 
threats. 

Sequential equilibria 

Requiring solutions of a game to be subgame perfect excludes some 
implausible equilibria. But subgame perfection is limited by the fact that 
many games cannot be cut into very many subgames, because the 
informational complexity of the games means that few sections of the game 
tree are informationally isolated from the rest of the tree. In such games, 
even subgame perfect equilibria may depend on what seem to be inherently 
incredible threats. 

Consider the game in Figure A10. The Soviet Union has three 
alternatives at the beginning of the game. If it does not challenge the status 
quo, - C, the game ends with the status quo payoffs (0,O). The Soviet Union 
may also pursue a limited strategy, L, or an unlimited strategy, U. If the 
Soviet Union pursues a limited strategy and the United States then submits, 
the payoffs will be (-4,4). If, however, the Soviet Union is pursuing an 
unlimited strategy and the United States acquiesces, then the United States 
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will pay a higher cost. Here the payoffs are (-8,8). Whether the Soviet 
Union pursues a limited or unlimited strategy, the United States can launch 
a massive nuclear attack, A, which will end the game with (- 10, - 10). 
Finally, when the United States must decide whether to attack or submit, it 
does not know whether the Soviet strategy is limited or unlimited. This 
means, formally, that both of the American decision nodes are in the same 
information set. 

The combination of strategies (A, - C) in which the Soviet Union does 
not challenge the status quo and the United States attacks if there is a 
challenge is a Nash equilibrium. Given the Soviet strategy of -C, the 
American payoff is zero regardless of what it does. Every American strategy 
is a best response, and, in particular, A is a best reply. Given the American 
strategy of A, the best the Soviet Union can do is not challenge the status 
quo: - C is the Soviet Union's best reply. Because each player's strategy is a 
best response to the other's strategy, (A, -C) is a Nash equilibrium. 

This combination of strategies is also subgame perfect. To see this, note 
that the game in Figure A10 has only one subgame, which is the game itself. 
A subgame does not begin at either American decision node, because the 
part of the tree beginning at either of these nodes is not informationally 
isolated from the rest of the tree. The United States' information set links 
the part of the tree beginning at one of the American decision nodes with 
the rest of the tree. Because (A, - C) is Nash in all of the game's subgames, 

Figure A10. A game with only one subgame. 
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which in this case amounts to being Nash only in the game itself, (A, - C) is 
subgame perfect. 

Although this combination of strategies is subgame perfect, the 
equilibrium does not seem reasonable. The American strategy of playing A 
seems incredible. Just as it seemed implausible that the United States would 
attack in the massive-retaliation game in Figure A8(a), because if it actually 
had to act it would always do better by submitting, it also seems 
unreasonable for the United States to attack in the game in Figure A10. 
Whether the United States is at its upper or lower node, submitting always 
offers a higher payoff than attacking. Attacking at the upper node in the 
information set would bring -10, and submitting would bring -8. 
Attacking at the lower node would also yield - 10, but acquiescing would 
be even less costly, giving -4. Accordingly, an equilibrium based on a 
Soviet assumption that the United States will play A would seem to be an 
unreasonable solution for the game. 

Sequential equilibria may in part be seen as an attempt to exclude 
equilibria like (A, -C) by extending the basic idea underlying subgame 
perfection." Subgame perfection requires that each player behave 
reasonably in all subgames in the sense that no player can have an incentive 
to deviate from its equilibrium strategy in any subgame. Clearly, the United 
States in Figure A10 has an incentive to deviate from its strategy of A if it 
ever actually has to act. But because a well-defined subgame does not start I 

at this information set, the criterion of acting reasonably in all subgames 
cannot rule out this American strategy. Suppose, however, one could define 1 
a player's payoffs beginning at any information set, not just from a single 
node at the start of a subgame. Then, just as subgame perfection requires 
that no player have an incentive to deviate from its strategy in any subgame, 
one might require that no player have an incentive to deviate from its 
strategy at any information set given the other players' strategies. This 
requirement would then rule out an equilibrium like (A, - C) in the game in 
Figure A 10, for the United States would always have an incentive to deviate 
from A. In effect, a sequential equilibrium first specifies a way ofcalculating 
a player's payoffs not just within a subgame but starting at any one of its 
information sets. Then a sequential equilibrium demands that no player 
have any incentive to deviate from its equilibrium strategy at any of its 
information sets. 1 

To make this description of a sequential equilibrium meaningful, a way 
of calculating a player's payoffs starting from any information set must be 
defined. Suppose a player wanted to calculate the expected payoff of 
following a specific strategy starting from one of its information sets and 
' l  See Kreps and Wilson (1982b) and Kreps and Ramey (1987) for a discussion of sequential 

equilibria. 

given the other players' strategies. If the player knew where it was in this 
information set, then calculating this strategy's expected payoff would be 
easy. The player could simply trace the path through the tree starting from 
this node and specified by this player's strategy and the other players' 
strategies. Consider, for example, the problem confronting I in the simple 
poker game in Figure A4 if it wants to determine the expected payoff to 
bidding given that it has drawn a red card and that II's strategy is to bid if it 
has a black card and to fold if it has a red card. I knows that it has a red card, 
but does not know if it is at the upper-right node or the lower-left node in 
the information set associated with Nature dealing I a red card. If, however, 
I knows that it is at the upper-right node, that is to say that Nature has 
actually followed the branch (R, R), then I can easily calculate the expected 
payoff of bidding, given Il's strategy. If I bids, Il's strategy is to fold, 
because IIis holding a red card. I's expected payoff is 1. Similarly, if I knows 
that it is at the lower-left node [i.e., Nature has dealt (R, B)], then I's 
expected payoff to bidding, given II's strategy (which, if holding a black 
card, is to bid), is -2. The problem in calculating the expected payoff of 
following a particular strategy at a specific information set is that a player 
does not know where it is in this information set. In the simple poker game, 
Idoes not know whether it is at its upper-right node or lower-left node. But 
suppose that a player has some beliefs about where it is in an information 
set. That is, a player attaches some probability to being at a specific node 
given that this player is somewhere in this information set. Then the 
expected value of following a specific strategy at this information set is the 
sum over all of the nodes in this information set of the probability of being 
at any given node times the expected utility of following this strategy 
starting from this node. I may, for example, believe, after drawing a red 
card, that the probability that it is at its upper-right node in the simple 
poker game is $. Thus, the expected payoff to bidding at this information set 
is the probability of being at the upper-right node times the expected payoff 
of bidding at this node, which is 1, plus the probability of being at the lower- 
left node times the utility of bidding there. This is ($)(l) + (;)(-2) = -$. In 
sum, once a player's beliefs about where it is in an information set are 
specified, then this player's expected payoff to following some strategy, 
given the other players' strategies, can be calculated. 

To generalize this way of calculating the expected payoff at a player's 
information set, let i be some player in an arbitrary game. Player i is 
assumed to have a system of beliefs, which is denoted by pi. For each of i's 
information sets, pi specifies the probability with which i believes that it is at 
a particular node given that the play of the game has reached the 
information set containing this node. More formally, pi specifies the 
probability of being at each node conditional on being in the information 
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set containing this node. In the simple poker game, a system of beliefs for I 
would define the probability that Iwould be at the upper-right node and the 
lower-left node given that I was at the information set associated with its 
holding a red card. I might, for example, believe, as before, that these 
probabilities were and $, respectively. I's system of beliefs, p,, would also 
have to specify what I would believe should it find itself holding a black 
card. Recalling that each player is assumed to have a system of beliefs, let p 
denote the set of all the players' belief systems. In the simple poker game, 
p =  {pI,pIl}. Accordingly, p specifies for each node in the game the 
probability that the player who owns this node attaches to being at this 
node given that the play of the game has reached the information set 
containing this node. Now let (p, n) be an assessment of a game, where p is a 
system of beliefs and n is a combination of the players' strategies that 
provides a complete plan for playing the game. An assessment contains 
enough information to permit the calculation of a player's expected utility 
to following a particular strategy at any one of its information sets. With n, 
one can calculate any player's expected payoff to following this strategy 
starting from a specific node in this information set. Then, with p specifying 
the relative likelihood of being at a particular node in this information set, 
one can calculate the expected payoff to following this strategy at this 
information set, as was done earlier in the poker-game example. 

A sequential equilibrium can now be defined as a special type of assess- 
ment. More specifically, an assessment (p,n) is a sequential equilibrium 
if it satisfies two conditions. The first is that the assessment must be 
sequentially rational. This means that no player has an incentive to deviate 
from its strategy at any one of its informations sets given its beliefs and the 
other players' strategies. This is merely the extension of the basic idea 
underlying subgame perfection. 

To clarify what it means to be sequentially rational, consider the 
following assessment. I's strategy is to bid if dealt a black card and to fold 
with a red card. II's strategy is always to bid: n = (n,, n,,) = (((B, b), (R, a), 
{(B, b), (R, b))). Suppose further that I believes that if it is holding a red card, 
the chance that II's card is black is & and therefore the probability that Il's 
card is red is also 3. Or, equivalently, given that play has reached the 
information set belonging to I at which I holds a red card, then the 
probability of actually being at the lower-left node in this information set is 
4. Similarly, I also believes that if it has been dealt a black card, then the 
probability that IIhas been dealt a red card is & and the chance that it has a 
black card is also 4. II's beliefs are simpler. Regardless of what its card is, II 
is certain that I has a red card. Momentarily setting aside the question of 
whether or not these beliefs are reasonable, the assessment composed of 
this system of beliefs and strategies is sequentially rational. 
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To be sequentially rational, no player can have any incentive to deviate 
from its strategy given its beliefs and the other players' strategies. IIclearly 
has no reason to change its strategy given its beliefs. Believing that I is 
certain to be holding a red card, bidding brings 2 if II's card is black, and 0 if 
11's card is red. Folding always brings - 1. Given II's beliefs, bidding is its 
best reply. Ialso has no incentive to alter its strategy given its beliefs and II's 
strategy. Given that IIwill always bid, I's payoff to bidding if it has a black 
card is 0 if II actually has a black card, and 2 if II's card is red. Ibelieves that 
the probability that II's card is black is 4; so I's expected payoff to bidding is 
(0)($) + (2)(3) = 1. If, however, I deviates by folding with a black card, its 
payoff will be - 1. If, instead, I tries a mixed strategy of bidding with 
probability p, then this strategy's payoff is the probability of bidding times 
the expected payoff to bidding plus the probability of not bidding times the 
payoff to that. So a mixed strategy yieldsp(1) + (1 -p)(- 1) = 2p - 1, which 
is also less than or equal to 1. Thus, I cannot improve its payoff by 
deviating; bidding with a black card is I's best reply given its beliefs. A 
similar argument shows that folding with a red card is I's best response 
given its beliefs and II's strategy. No player has any incentive to deviate 
from its strategy given its beliefs and the other player's strategy; so this 
assessment is sequentially rational. 

~ Sequential rationality is one of two conditions an assessment must 
satisfy in order to be a sequential equilibrium. The second condition has to 
do with the system of beliefs. Just as some Nash equilibria were excluded 
because the strategies seemed unreasonable, some belief systems seem 
unreasonable and will be excluded. Indeed, although the assessment just 

I described is sequentially rational, the beliefs underlying it do not seem 
sensible. When II bids, it is, according to its system of beliefs, certain that I's 
card is red. But II will bid only if I has already bid, and I, according to its 
strategy, will bid only if it has a black card. Given I's strategy, II should 
believe that I is  holding a black card if and when II has to decide whether or 
not to bid. II's beliefs are incompatible with I's strategy. 

The second condition an assessment must satisfy if it is to be a sequential 
equilibrium is that the belief system must be "reasonable" in the sense that it 
is consi~tent.'~ Requiring beliefs to be consistent entails a number of 

I subtleties and difficulties.13 Fortunately, the games analyzed in the 

The questions what constitute "reasonable" beliefs and, more generally, how to "refine" 
Nash equilibria in order to eliminate the unreasonable ones have motivated an immense 
amount of recent work in game theory. For further discussion of this, see Kreps and 
Wilson (1982b), Rubinstein (1985). Grossman and Perry (1986), Banks and Sobel (1987), 
Kreps and Ramey (1987), and Cho (1987). 
See Kreps and Wilson (1982b) and Kreps and Ramey (1987) for the formal definition of a 
consistent assessment and some of its subtleties. 
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preceding chapters are sufficiently simple that these difficulties and 
subtleties do not arise. The only important consistency criterion for the 
models examined in the preceding chapters is that the system of beliefs 
satisfy Bayes' rule where this rule can be applied. An assessment like this 
that is sequentially rational and satisfies Bayes' rule where this rule applies 
is aperfect Bayesian eq~ilibrium.'~ Bayes' rule is a means of revising a prior 
probability in light of some new information or e:ridence. In the present 
context, Bayes' rule provides a way of updating a prior probability of 
reaching a given decision node in light of play having actually reached the 
information set containing this node. It provides a way, for example, for I, 
after being dealt a red card, to revise the belief it held before the deal that 
red cards would be dealt to both it and II. 

Bayesian updating of beliefs is crucial to understanding the dynamics of 
the models analyzed in this volume. But before discussing Bayesian 
updating in a game-theoretic context where strategic interactions must be 
taken into account, it will be useful to discuss Bayesian updating in a 
simpler context in which there is only one player and no strategic 
interaction. Suppose that an urn can be filled with either of two possible 
mixtures. The urn may contain seventy-five green marbles and twenty-five 
blue ones, or it may hold twenty-five green marbles and seventy-five blue 
ones. The player believes that the two mixtures are equally likely. (This 
probability might be a subjective estimate; it could be based on a statistical 
analysis of some previously obtained data, or, if guessing the contents of 
this urn was a rather dull parlor game, then this probability might be due to 
the way that the mixture was chosen, say by flipping a coin.) Now the player 
is allowed to draw two marbles. Both are green. Given this new evidence, 
how should the player update the probability that the mixture is 75 percent 
green? Bayes' rule provides a means of doing this. 

The key to Bayes' rule is to observe that there are two ways of thinking 
about the probability that two events, say X and Y,  will happen. Let 
P ( X n  Y) denote the probability that both X and Y will occur. In the urn 
example, Xis the event "two green marbles are drawn," and Y is the event 
"the mixture is 75 percent green." One way to think about the probability 
that both Xand Y will happen is that this is the same as the probability that 
X will happen, given that Y will occur, times the probability that Y will 
happen. The probability that X will happen given that Y will occur is the 
conditional probability of X given Y and is denoted by P(XI Y). In the 
example, P(X( Y) is the probability of drawing two green marbles given that 
the mixture is 75 percent green. This is the probability that the first draw 

l4 This is the weakest notion of a perfect Bayesian equilibrium. Stronger ones are obtained by 
making assumptions about what "reasonable" beliefs are where Bayes' rule cannot be 
applied. 
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will be green, which is a ,  times the probability that the second marble will 
be green, which, because there are only ninety-nine marbles left and 
seventy-four are green, is $$. The probability of drawing two greens is 
therefore ( a ) ( % )  = 0.561. Letting P(Y) be the initial or prior probability of 
Y,  which in this example is the initial probability of a mostly green mixture 
or $, then the probability of both X and Y is equal to the chance of X 
happening, given Y,  times the probability of Y occurring, or P ( X n  Y) = 

P(X I Y)P( Y) = (0.561)($) = 0.280. 
But there is another way to thifik about the chances that both X and Y 

will happen. This is also the probability that Y will occur, given X, times the 
probability that Xwill happen, or P (Xn  Y) = P(YI X)P(X). The conditional 
probability P(Y I X) is, in the example, the probability that the mixture is 75 
percent green given that both the drawn marbles are green. This, moreover, 
is the updated probability that the player is trying to calculate. 

To find an expression for this updated probability, bring together the two 
ways of thinking about the chances that both X and Y will occur, to obtain 
P(Y (X)P(X) = P(X n Y) = P(XI Y)P(Y). Solving this for the updated 
probability that the player is trying to calculate, P(YI X), gives Bayes' rule 
for updating probabilities: P(Y I X) = P(X n Y)/P(X) = P(XI Y)P(Y)/P(X). 
That is, the probability of Y,  given X, is the probability of X and Y divided 
by the prior probability of X. Or, in the urn example, the probability of a 75 
percent green mixture, given that two greens have been drawn, is the 
probability of a mostly green mixture and a draw of two greens divided by 
the prior probability of drawing two greens. These probabilities are readily 
calculated. The former, as calculated earlier, is the probability of two 
greens, given a mostly green mixture, times the prior probability of a mostly 
green mixture, or (0.561)($) = 0.280. The prior probability of drawing two 
greens, P(X), is the probability of two greens, given a mostly green mixture, 
times the probability of a mostly green mixture plus the probability of 
drawing two greens from a mostly blue mixture times the probability of a 
mostly blue mixture. This is (&)($$)(*) + (a)($$)($) = 0.31 1. Thus, the 
Bayesian update of the chance that the mixture is mostly green after two 
green marbles have been drawn is 0.280J0.3 11 = 0.902. After drawing two 
green marbles, the prior probability that the mixture was mostly green, 
which was $ has been updated to 0.902. 

Returning now to a game-theoretic context, consider I's beliefs in the 
sequentially rational assessment described earlier for the simple poker 
game. They are consistent with Bayes' rule, as they must be in a sequential 
equilibrium or in a perfect Bayesian equilibrium. The prior probability of 
being at any one of I's decision nodes is $. That is, before the deal, I's 
estimate or prior probability of being at a specific decision node, say the 
node associated with Nature's dealing (R, R), is $. But after the deal, I knows 



that it is holding a red card and can then revise its beliefs to incorporate this 
new information. According to Bayes' rule, the probability of being at 
(R, R), given that play has reached I's information set associated with l's 
holding a red card, is the prior probability of being at (R, R), which is $, 
divided by the probability that the play of the game will reach this 
information set. This latter probability is simply the sum of the 
probabilities of reaching all of the individual nodes in this information set 
or, in this case, the probability of reaching (R, R) plus the probability of 
reaching (R, B), which is 3. Bayes' rule assigns a probability of ($)/($ + $) = 3 
to being at (R, R), given that I knows it is holding a red card. This is precisely 
what I's belief system in the sequentially rational assessment says that I 
believes about Il's card, given that I is holding a red card. 1's beliefs are 
consistent with Bayes' rule. 

Now consider Il's beliefs. When bidding, II believes that I is certain to be 
holding a red card. As noted earlier, this belief seems unreasonable, given 
I's strategy, because II will have an opportunity to bid only if I bids, and I 
will bid only if its card is black. Indeed, the only thing that it seems 
reasonable for II to believe about I's card, given I's strategy, is that I's card 
is black. Requiring beliefs to be consistent with Bayes' rule simply 
formalizes this reasoning, and this shows that Il's beliefs do not conform to 
Bayes' rule. The sequentially rational assessment described earlier is 
therefore not a sequential equilibrium. 

To see that Il's beliefs are incompatible with Bayes' rule, suppose that II 
holds a black card, and I bids. II, therefore, is somewhere in its lower 
information set in Figure A4. But where does II believe it is? What, for 
example, is the probability that it is at the upper-left node? Or, equivalently, 
what is the probability that Nature has dealt (B, B) and I has bid? The first 
step in calculating this probability is to find the prior probability of 
reaching this node (i.e., the probability of reaching this node as calculated 
before the game begins). This is the probability that Nature will deal (B, B) 
times the probability that I will bid with this deal. Nature will deal (B, B) 
with probability $, and I, according to its strategy, will always bid when 
dealt a black card. The prior probability of reaching Il's upper-left decision 
node in its lower information set is $. Similarly, the probability of reaching 
the lower-right node in this information set is the probability that Nature 
will deal (R, B) and that I will bid. This is ($)(O) = 0. The updated probability 
of being at Il's upper-left node, given that I has actually bid, or, in other 
words, that play has actually reached the information set containing this 
decision node, is then obtained by dividing the prior probability of reaching 
this node by the probability of reaching this information set. This latter 
probability is + 0; so the updated probability is ($)/($) = 1. That is, II, 
according to Bayes' rule, is certain that it is at its upper-left decision node. 
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Similarly, I1 believes that the probability that I is  holding a red card when I1 
is actually bidding is 0/($ + 0) = 0, not 1 as in the sequentially rational 
assessment. Beliefs in this assessment are not in accord with Bayes' rule, and 
this means that the assessment cannot be a sequential equilibrium. 

To state the requirement that beliefs satisfy Bayes' rule somewhat more 
generally, let y be some decision node, and let h be the information set 
containing y. Then, for any assessment (p, n), the probability of reaching y 
can be calculated. Let P(yJ(p,n)) denote this probability. Similarly, the 
probability of reaching h can be calculated. It is P(hI(p,n))= 
CXEh P(x((p, n)), where x is a node in h, and the summation is taken over all 
of the nodes in h. Then, if P(hI(p,n)) >O, Bayes' rule says that the prob- 
ability of being at y, given that play has actually reached h, is P(yl(p,n))/ 
P(h I (p, 4). 

Clearly, Bayes' rule cannot be applied if the probability of reaching an 
information set is zero [i.e., if P(hI(p, n)) = 01, for trying to use the rule in 
this case would entail dividing by zero. However, as long as P(hI (p, n)) > 0, 
Bayes' rule can be used, and the only consistency criterion required of 
beliefs in the models in this volume is that beliefs satisfy Bayes' rule at 
information sets where this rule can be applied.15 

Games of incomplete information 

The final issue to be discussed is the problem of incomplete information.16 
Players in a situation may have incomplete information about the other 

What distinguishes a sequential equilibrium from the weakest notion of a perfect Bayesian 
equilibrium, which is the one employed here, is that a sequential equilibrium places weak 
consistency restrictions on beliefs at information sets that are reached with probability 
zero. To describe a consistent assessment and to specify more formally what conditions 
consistent beliefs must satisfy at information sets that are reached with zero probability, let 
n1 be a completely mixed set of strategies for playing the game. A set of strategies is 
completely mixed if each participant plays every alternative at  each of its information sets 
with a positive probability. That is, no alternative is played with zero probability in nl. 
Because every alternative is played with positive probability, every information set h is 
reached with positive probability. Accordingly, Bayes' rule can be applied at every 
information set in the game. Let pL(y) be the probability of being at y given that play has 
reached the information set containing y, which will be denoted by h(y). Then, by Bayes' 
rule, = ~(yln')/P(h(y)ln'). In brief, Bayes' rule can always be used to define a system 
of beliefs p1 when n1 is completely mixed. An assessment (p, n) is consistent if and only if 
there exists a sequence of completely mixed assessments that converges to (p,n). 
Symbolically, there must exist a sequence of {(pi, ni)}z ,,where the ni are completely mixed 
and are such that limi,,(pi, ni) = (p, n). For a detailed discussion of consistency and some 
of the subtleties associated with it, see Kreps and Wilson (1982b) and Kreps and Ramey 
(1987). 

l 6  Harsanyi (1967-8) originated this approach. 
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players. A player may be uncertain of the other players' payoffs or of the set 
of alternatives from which the other players can choose. In crises, for 
example, states often are said to be unsure of the resolve of their 
adversaries. That is, a state lacks complete information about its 
adversary's willingness to run risks or about what the adversary sees as 
being at stake in the crisis. Games of incomplete information are used to 
model situations in which players are uncertain about some aspects of the 
situations confronting them. An important feature about these games is 
that players can try to learn about the other players by observing what they 
do. Of course, an adversary, understanding this, also may have an incentive 
to try to misrepresent its type, to try, for example, to appear to be more 
resolute than it actually is. Games of incomplete information are used to 
study these competing influences and their effects on the players' strategies. 

An example may be the best way to illustrate how games of incomplete 
information are set up and analyzed. The example is a variant of the simple 
model of massive retaliation used earlier in the discussion of subgame 
perfection. In this variant, the Soviet Union is uncertain of the cost tb the 
United States of acquiescing to a Soviet challenge. Suppose, that is, that 
when the United States is relatively invulnerable to Soviet retaliation, the 
United States attempts to prevent a Soviet challenge by threatening to 
retaliate massively to a Soviet provocation. In the game, the status quo 
payoffs are (0,0), and the respective payoffs to the United States and the 
Soviet Union will be (- 5, - 10) if there is a Soviet challenge and a massive 
American nuclear attack in response. (The payoff of - 5 reflects an assumed 
relative American invulnerability.) The Soviet Union will also receive 5 if 
the United States acquiesces to a Soviet challenge. The Soviet Union, 
however, lacks complete information about the United States. In 
particular, the Soviet Union is unsure if the United States attaches a high 
value to what is at stake, so that submission will bring a large loss of -7, or 
if the United States puts a low value on what is at stake, so that submission 
will bring only a small loss of -3. 

Figure A1 l(a) shows the tree and payoffs if the cost to giving in is high, 
and Figure A1 l(b) depicts the tree and payoffs if the cost is low. The 
problem would be easy to analyze if the Soviet Union were sure of the 
American payoff to acquiescing. If the cost to giving in were known to be 
high, the Soviet Union would be in the game in Figure A1 l(a), where the 
unique subgame perfect equilibrium is for the Soviet Union not to 
challenge and for the United States to attack if challenged. Similarly, if the 
cost of American acquiescence were known to be low, the game in Figure 
All(b) would be the relevant one. Here the unique subgame perfect 
equilibrium has the Soviet Union challenging the status quo and the United 
States submitting. 

The difficulty is, of course, that the Soviet Union is uncertain whether the 
cost to the United States of submitting is high or low. To model this lack of 
complete information, the two games in Figure A1 1 are combined into a 
single, larger game. Suppose that the Soviet Union believes that the 
probability that the United States attaches a high cost to submitting is p, 
and the probability of a low cost is 1 - p. Then the games in Figure A1 1 may 
be combined to form the game in Figure A12. This game begins with 
Nature making a random move. This is the modeling device used to create 
the Soviet Union's uncertainty about the American cost of submission. If 
Nature takes the upper branch, which it will do with probability p, then the 
rest of the tree beginning at the Soviet decision node is the same as the tree 
in Figure All(a). (The prime on "U.S." indicates that along this path 
through the tree, the United States attaches a high cost to submitting and 
will play accordingly.) Thus, if the Soviet Union were certain that it was at 
the upper node in its information set in the game in Figure A12, this game 
would be played in exactly the same way as the game in Figure A1 l(a). 
Similarly, if Nature takes the lower branch, which it will do with probability 
1 - p ,  then the rest of the game starting from the Soviet Union's lower 
decision node corresponds to the tree in Figure A1 l(b). If the Soviet Union 
were certain that it was at this lower node, then the game in Figure Ai2 
would be played just like the game in Figure A1 l(b). The Soviet Union, 
however, does not know if it is at its upper or lower node, for they are in the 
same information set. Rather, the Soviet Union forms beliefs about where it 
is in its information set. Following Bayes' rule, the Soviet Union believes 

Figure A1 1. Massive retaliation with high and low stakes. 

U.S. / U.S. T 
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that it is at its upper node with probability p and at its lower node with 
probability 1 - p. In effect, the Soviet Union begins the game believing that 
the probability that the United States attaches a high cost to submitting is p 
and that the probability that the United States attaches a low cost is 1 - p. 
In this way, the larger game in Figure A12 models the Soviet Union's lack of 
complete information and beliefs about the American payoffs. This game 
can then be solved for its sequential equilibria, and the equilibrium strat- 
egies in this larger game will incorporate the Soviet Union's uncertainty 
about the American payoffs. 

A second example of an incomplete-information game will illustrate the 
interaction between beliefs and strategies. In this game, which is depicted in 
Figure A13(a), a potential challenger, C, begins by deciding whether or not 
to challenge the status quo. If it decides not to mount a challenge, the game 
ends with continuation of the status quo. If the potential challenger 
disputes the status quo, the defender, D, can either resist, R, or submit, S. If 
the defender submits, the game ends. If it resists, then the challenger must 
decide whether to attack, A, or back down, S. 

Figure A12. Massive retaliation with incomplete information. 

The status quo payoffs are (0, O), where the first element of this pair is the 
challenger's payoff. If the defender submits, the challenger receives 10, and 
the defender loses 10. If the defender resists and the challenger backs down, 
the challenger loses 10, and the defender gains 10. If the challenger attacks, 
the defender's payoff to the ensuing war is - 15. The defender is, however, 
uncertain of the challenger's payoff to fighting. There are two possibilities. 
(There could, of course, be more possibilities, but that would make the 
resulting game difficult to analyze.) The challenger's payoff to attacking 
may be sufficiently low, say -15, that it will prefer backing down to 
attacking if D resists the challenge. These are the payoffs in Figure A1 3(a). 
Or the challenger's payoff to fighting may be high enough, say - 5, that it 
will rather attack than submit if resisted. Figure A13(b) shows these payoffs, 
where C' denotes the more determined challenger. 

As in the massive-retaliation example, the situation would be easy to 
analyze if the defender were certain of the challenger's payoffs. If, as in 
Figure A13(a), the challenger's payoff to attacking is so low that it will 

Figure A13. Escalation with different payoffs to fighting. 
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prefer backing down to attacking, then the defender should resist, for the 
challenger will then submit. Indeed, foreseeing that it will eventually back 
down, the potential challenger will not even dispute the status quo. The 
unique subgame perfect equilibrium of the game in Figure A13(a) has the 
potential challenger accepting the status quo, the defender resisting if 
challenged, and the challenger backing down. (Remember that an 
equilibrium describes what will be done at every information set even if in 
equilibrium some of these information sets are not reached.) 

If the defender is certain that the challenger prefers attacking to backing 
down, then resistance will bring -5, whereas submitting will cost only 10. 
In this case, D will not resist, and the potential challenger will actually 
challenge the status quo. The unique subgame perfect equilibrium for the 
game in Figure A13(b) is for the challenger to mount a challenge, the 
defender to submit, and the challenger to fight should the defender resist. 

But the defender is uncertain of the challenger's payoffs. Suppose the 
prior probability of facing a challenger that prefers fighting is p, and the 
probability of confronting a challenger that would rather quit is 1 - p. The 
game in Figure A14 represents this situation. Once again, incomplete 
information is modeled by having Nature begin the game with a random 
move that leaves D uncertain about the type of its adversary. 

Note, however, that what the defender believes about the challenger 

Figure A14. Escalation with incomplete information. 

depends both on the defender's prior belief and on what the challenger 
does. This was not an issue in the previous example of an incomplete- 
information game, because the Soviet Union moved before the United 
States. Thus, the Soviet Union, which was the state that lacked complete 
information about its adversary in that example, could not update its 
beliefs about the United States' payoffs based on what the United States 
had actually done. This new information was not yet available. In the 
current example, however, the uncertain state, D, decides what to do after 
the other state has moved. Accordingly, the defender can update its prior 
belief about the challenger's willingness to fight in light of the challenger's 
decision whether or not to challenge the status quo. 

To illustrate the interdependence between the challenger's strategy and 
the defender's updated beliefs, suppose initially that both C and C' are 
certain to escalate. Intuitively, if C and C' will behave identically, there is 
nothing to be learned from seeing what the challenger actually does. The 
updated probability of facing a particular type of challenger will not differ 
from the prior probability of facing that type of challenger. That is what 
Bayes' rule shows. The probability of facing the determined challenger C' if 
D has actually been challenged, according to Bayes' rule, is the prior 
probability of reaching the lower decision node in D's information set 
divided by the probability that play will actually reach this information set. 
The prior probability of reaching the lower decision node is the prior 
probability of facing the more determined challenger C', which is the 
probability that Nature will follow the lower branch times the probability 
that C' will mount a challenge. Given that the more determined challenger's 
strategy is always to mount a challenge, the prior probability of reaching D's 
lower node is p . I =  p. The probability of actually reaching D's information 
set, that is, the probability that the potential challenger will really challenge 
the status quo, is the probability that Nature will take the upper branch, 
which is 1 - p, times the probability that C will challenge the status quo plus 
the probability that Nature will follow the lower branch, which is p, times 
the probability that C' will challenge the status quo. This is p .  1 + 
(1  -p) .  1 = 1. So the probability of facing C', given the potential 
challengers' strategies and the fact that the status quo has actually been 
challenged, is p. If both types of challengers will behave in the same way, the 
challenger's actual behavior reveals nothing about it, and the Bayesian 
update of the probability of facing a specific type of challenger is 
unchanged from the prior probability. 

But suppose that the two types of challengers will behave differently. 
Then, observing what has actually happened may say something about the 
type of the challenger. To illustrate this, assume that the determined 
challenger still will be certain to dispute the status quo, but the probability 
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that the less determined challenger will dispute the status quo is 0.1. If, given 
these strategies, the defender is challenged, it would seem that the chance 
that the challenger is more determined rather than less is quite high. The 
updated probability of facing C' rather than C is high. Bayes' rule again 
formalizes this. The updated probability of facing C' if there has been a 
challenge is the prior probability of facing C', which is still p, divided by the 
probability of there being a challenge or, equivalently, of play actually 
reaching D's information set. This latter probability is, as before, the prior 
probability of facing C' times the probability that C' will dispute the status 
quo plus the prior probability of facing C times the probability that it will 
challenge the status quo. The updated probability of facing C', given the 
potential challengers' strategies and the fact that there has been a challenge, 
is p / [ p .  1 + (1 -p)(0.1)], which is much greater than p. (If, for example, 
p = 0.25, then the updated probability is (0.25)/[(0.25) + (1 - 0.25)(0.1)] = 
0.77.) 

In this case, the defender has used what has actually happened in the 
game to revise its beliefs about the type of its adversary. This is a common 
feature of games of incomplete information. Of course, the challenger 
realizes that the defender is trying to ascertain the challenger's type by 
watching what it does. This may .create an incentive for the challenger to 
behave differently than it otherwise would in order to misrepresent its type. 
C, for example, may want to try to convince the defender that it is facing C' 
and thus should not resist a challenge. These are some of the issues that 
games of incomplete information and their sequential equilibria help to 
illuminate. 

In both examples of incomplete-information games there was one-sided 
incomplete information. Only the Soviet Union was uncertain about some 
aspects of the United States; the United States was completely certain of the 
relevant aspects of the Soviet Union. Similarly, only the defender was 
uncertain of some aspects of the situation in the second example. 
Nevertheless, the same approach to modeling incomplete information may 
be extended to the case in which every player is uncertain about some 
aspects of the other players. Incomplete information can, in general, be 
modeled by creating a game in which Nature will behave probabilistically, 
so that each player will begin this game with beliefs that reflect its 
uncertainty or lack of complete information about the other players. The 
equilibrium strategies in this often very large and complicated game will 
then reflect the players' incomplete information and the players' attempts 
to resolve and exploit this uncertainty. 


