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Overview We have seen how to compute Nash equilibrium in pure stiededie
now learn how to compute equilibria in mixed strategies. \lig® éearn how to
calculate the probabilities of equilibrium outcomes and tiem as the basis of a
simple analysis of a generic crisis. We also look at an indideolving Greenpeace
and conclude with an overview of classic strategic games.




1 TheCriss Game, Revisited

Recall that the crisis game, depicted in Figure 1, has twdlibga in pure strate-
gies: (E, ~e) and(~E, e). In these equilibria, the war outcome never occurs be-
cause one of the players submits. Of course, this begs tistiguevhy we thought
the situation is a crisis in the first place: if one of the play&as going to submit
and both players knew that, then there really is no crisisnde see that the game
has another Nash equilibrium, this one in mixed stratedjied captures the idea of

a crisis very well.

-5,-51,-1 —-1,1 0,0
Figure 1: Crisis Game With Imperfect Information.

A pure strategy specifies what action to take at each infoomaet where the
player gets to move in the game. A mixed strategy specifieobapility distri-
bution over the pure strategies. That is, it specifies théadvoity with which the
player picks one of his pure strategies. In our crisis garaeh @layer has one in-
formation set with two actions, so two pure strategigs; ~ E'} for player 1 and
{e, ~e} for player 2. Letp € [0, 1] denote the probability with which player 1
choosesE, sol — p is the probability with which he choosesE. Sincep is a
valid probability distribution, it is a mixed strategy. $athere is an infinite num-
ber of values thap can take, player 1 has an infinite number of mixed strategies.
Analogously, leyy € [0, 1] denote the probability with which player 2 choogeso
thatl — ¢ is the probability with which she chooseg. Thisg is a mixed strategy
for player 2, and she has an infinite number of mixed straseggevell.

1.1 Best Responsesand Mixed Strategies

We now must find the best responses given that players cahese inixed strate-
gies. The principles are the same as for the pure strategiepiewe now must take
into account the fact that outcomes are not certain but fibsiéc. To see this,
consider the following. Player 1 pickis with probability p. If player 2 responds

by e, the game will end in disaster with that probability and witayer 1's capitula-
tion with probabilityl — p. Since the outcome is uncertain, player 2 must compute
the expected utility of her strategy. When the outcomes were certain, we simply
compared the utilities attached to them to decide whicloads better. We cannot
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do this when the outcomes are uncertain because one actioasidt in more than
one outcome. The Expected Utility Theory by von Neumann amdgenstern (to
which | referred earlier) tells us how to deal with such diwas.

To compute the expected utility of an action, you take theoffdgr an outcome
it produces and multiply it by the probability with which shoutcome will occur;
you do this for each outcome that the action can produce,erdadd the results.
In our example, disaster occurs with probabilgyand yields a payoff of-5 for
player 2 whereas capitulation by player 1 occurs with prdlbghl — p and yields
her payoff ofl. Player 2’s expected utility of choosirgs:

EUx(e) = p(=5) + (1 —p)(1) =1 —-6p.

If player 1 choseE with probability p = 1/4, then player 2’s expected utility from
choosinge will be (substitutingp in the expression above)i/s) (—5)+ (3/4) (1) =
—1/,. In this way, we could compute the expected utility for anjuesof p.

Player 2's expected utility from playing e is computed analogously. Since
player 1 choose& with probability p, playing this strategy results either in player
2’s capitulation (with probabilityp) or in the status (quo with probability — p).
Her expected payoff is:

EUz(~e) = p(=1) + (1 — p)(0) = —p.

The first term in the sum is the probability that player 1 clesds multiplied by
player 2’s payoff from having to capitulate. The second textie probability that
he chooses- E multiplied by her payoff from the resulting status quo. layér
1 usesp = 1/4, then player 2’s expected utility frome would be: (1/4) (—1) +
(3/2) (0) = —1/a.

Once you compute the expected utility for each strategybtse response is
simply the strategy that yields the highest expected utility. This is very similar
to the best responses in pure strategies where we compdreesudirectly. Under
uncertainty, we have to compare expected utilities instéwad’s all. For example,
the best response to player 1's mixed strategy 1/4 is to choose the strategye
because it yields an expected payoff-of/s, while choosing yields an expected
payoff of —1/,. This makes sense: given the very bad payoff associatedtieéth
disaster outcome, even a relatively low probability of itoing should player 2
choose to escalate given player 1's strategy of escalatitingprobability 1/, keeps
her from escalating.

This is the method for calculating the best responses todvsikategies. Because
there is an infinite number of mixed strategies, it is not faego calculate all
best responses directly. However, we can note somethingivgrortant. Given
any arbitrary mixed strategy for player 1, player 2’s best response wouldebe



whenever its expected utility exceeds the expected utfitye:

EU2(€) > EUZ(Né’)
p(=5)+ (1 —=p)) > p(=1) + 1A - p)0)
/s> p.

Thus, we conclude that if player 1 choogeéwith probability less than 20%, then
player 2’s best response must be to chaogeonversely, we can flip the direction of
the inequality to determine that if player 1 choogewvith probability greater than
20%, then player 2’s best response must be to cheesd&hus, even though player
1 has an infinite number of mixed strategies in which he playsith probability
less thanl/s, player 2 has the same best response to all of them: she tescala
Analogously, even though he has an infinite number of mixetegjies in which
he playsE with probability greater than/s, she has the same best response to all
of them: she does not escalate. Note that in both cases [@&yeest response to
player 1's mixed strategy is a pure strategy.

Since we have now covered all mixed strategies with /5 and all mixed strate-
gies withp > 1/5, we have one remaining mixed strategy to consiger= 1/s.
When player 1 chooses this particular mixed strategy, plays indifferent be-
tween escalating and not because her expected payoff from aa the same:
EUy(e) = EU,(~e) = —1/5. Since both strategies are equally good (or equally
bad), they ardoth best responses. This means that player 2 could use either str
egy as a best response, but, more importantly, she can ateselo play either
one of them with some probability; i.e., she can plagnaed strategy as a best
response as well. This follows immediately from the fact thexr payoff to the two
pure strategies is the same: it does not matter which oneiske (@and with what
probability), she will always get the same payoff in expgota Mathematically,
if she useg with probabilityg whenp = 1/s, then her expected payoff from the
mixed strategy is

EU,(q) = qEUz(e) + (1 — q)EU(~e) = EUy(~e) = EU,(e)

regardless of the value gf In other words, if player 1 mixes with probabilitys,
then player 2 can do anything in response.

Itis crucial to realize thdor a mixed strategy to be abest response, the player
must beindifferent among the actionsthat this strategy uses. If the player is not
indifferent, then one of the actions must be yielding a higheected utility than
the other, but in this case a mixed strategy that assignsiiveqsrobability to the
action that yields a lower expected utility cannot be optinTde player could do
strictly better by choosing the action with the higher titilvith certainty.

To see this, consider some > 1/s. We already know that player 2's best re-
sponse is the pure strategy because Ebl~¢) > EU,(e) in this case. She is not
indifferent between her two pure strategies, which meaaisathy mixture between
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them that puts positive probability on the strategy thatdgehe worse expected
payoff is itself worse than the pure strategy with the bettgyected payoff. Intu-
itively, since the mixed strategy uses a bad pure stratetly pasitive probability,
player 2 could do better by reducing the probability with ethshe chooses the
bad pure strategy. In this case, this means playing(EUvith a lower probability,

so she is always better off choosiggas low as she can. Since the lowest such
probability isg = 0, she must be best off simply not playing that pure strategy at
all; i.e., she does best by playiag: for sure, which is precisely the best response
we found before. So remembéf,a mixed strategy is a best response, then all
actions to which it assigns positive probability must yield the same expected
utility to the player. Furthermoreif the player has morethan one best response
strategy to some strategy of the opponent, then any mixture among his best
response strategiesis also a best response to that strategy of the opponent.

Let us now represent player 2's best responses in our mixategy notation.
The pure strategy can be represented by the mixed strategy in which she chooses
e with certainty:g = 1. Analogously, the pure strategye can be represented by
the mixed strategy in which she chooses with certainty:1 —¢ = 1, org = 0.

We can then summarize player 2's best responses in tergpna®follows:

q = 1 if p < 1/5
BR:(p) = {9 =0 it p>15s
q€[0,1] if p= 1.

Note that player 2’s best response in each of the first twoscasa unique pure
strategy. Only in the last case does she have an infinite nuofibest responses.

We can use a similar approach to determine player 1's bgsbmess to player
2’'s mixed strategy. Player 1 will choose& whenever:

EU,(E) > EU,(~E)
q(=5) + (1 —¢)(1) > g(=1) + (1 — ¢)(0)
s > ¢
Conversely, he would chooser whenevey > 1/5, and will be indifferent between

the two actions whenever = 1/s. Summarizing his best responses in termg of
gives us:

p = 1 if q < 1/5
BRi(¢9) = {p=0 it g >1s
pelo,1] if g =1/
These best responses are very intuitive: each player chtmsscalate if the proba-

bility that its opponent will escalate is sufficiently low(ihis case, less than 20%);
otherwise, the player prefers to submit.
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1.2 TheMixed Strategy Equilibrium

Recall that an equilibrium is a strategy profile where alitggies are best responses
to each other. Let’s see which profiles in this game meet tiitisron. Recall that
a strategy profile in mixed strategies is denoted(pyq), where p is player 1's
strategy, and is player 2's strategy.

First, consider strategy profiles with > 1/5. In this case, player 2's best re-
sponse iy = 0. The best response o= 0 is p = 1. Therefore, the profil¢l, 0)
is a Nash equilibrium. This, of course, is the pure-straegyilibrium (E, ~e) we
already know about.

Second, consider strategy profiles wjgh< 1/5. In this case, player 2's best
response iy = 1. Player 1's best response 0= 1is p = 0. Therefore,
the profile(0, 1) is another Nash equilibrium. This, of course, is the puratsgy
equilibrium(~F, e) that we have already seen.

Finally, consider strategy profiles with = 1/5. We know that if player 1 is
willing to mix with this probability in equilibrium, he mugie indifferent between
his two pure strategies. From his best responses, we fudtosy that he will only
do so if player 2 chooseg = 1/5. Thus, in any strategy profile in which player 1
mixes withp = 1/s, it must be that player 2 mixes with= 1/5. But since player
2 must be willing to mix in equilibrium, she must also be ifieiient between her
two pure strategy. From her best responses we know that shenlyi do so when
p = 1/5. Thus, in any strategy profile in which player 2 mixes in eipuilim, it
must be thatp = !/s. We conclude that the only mixed-strategy profile that can
be an equilibrium involves both of them mixing with probatlyil!/s. These mixed
strategies are mutual best responses and the profile isiitkesl-strategy Nash
equilibrium (MSNE).

It is important to realize that when player 1 chooges= 1/s5, player 2 could
useany mixed strategy as a best response. She has no particulanrgapick
q = /5. However, if it is optimal for player 1 to mix (that is, if higrategy is part
of an equilibrium), then he must be expecting player 2 to mikwy = !/5 because
otherwise he would choose the pure strategy that happeresadbst response to
the strategy player 2 is playing. Therefore, in equilibriplayer 2’s strategy must
beg = /. Itis crucial to note that she does not pick that straiegyder to make
player 1 indifferent. Rather, it is because player 1 is ifiedént in equilibrium that
she must be playing (or at least he must be expecting her ) ls particular
mixed strategy.

The MSNE of the crisis game now looks like a real crisis. Ingbkition of the
game, escalation occurs with positive probability. Letécalate the probabilities
of the various outcomes. The probability of war is the prolitgtthat both escalate:
1/sx 1/5 = 1/,5, 0r 4%. The probability that 1 escalates and 2 submitgis 4/5 =
4/5, 0r 16%. This is also the probability that 2 escalates andbin#ts. Finally, the
probability that the status quo prevailsg x 4/5s = 16/,5, or 64%. Let’s check our



calculations64 + 16 + 16 + 4 = 100. That is, the probability of one of these four
outcomes occurring is 100%.

We can learn quite a bit from this solution. First, the praligfthat neither site
escalates and the status quo prevails is rather large, 64% sHiould be intuitive:
since crises are dangerous games to play, most often thgplayars will avoid
them. The status quo will have a strong pull and many woulddyérontations
would simply never materialize because states would bedadféhe risks involved.
We should keep this in mind when we study deterrence (the searity strategy
of the US during the Cold War), and especially its claims thags prevented a
confrontation with the USSR. Contrast this with the findimgni the PSNE: the
SQnever survives in these equilibria, which | said was counterdtite. Now our
intuition is confirmed by the MSNE.

Second, the probability that a potential crisis escalatesa real one but is re-
solved by the submission of one of the participants is 32%usTla significant
portion of potential crises will be resolved short of war. fatt, conditional on
the crisis occurring, the probability that it will be reset by the submission of
one of the participants is huge: 89%. To calculate this dudibg note that only
100 — 64 = 36% of potential crises become actual ones (in the othersereside
escalates). Of these 36, only 4 end in war. Thus, the prababila resolution by
submission i$$2/36, or 0.888, which rounds to 89%.

Third, the probability that one particular player will peglvis 16%. Unfortu-
nately, it is precisely the possibility of this outcome thedds players to engage
in risky behavior—they escalate with positive probabibigcause they are hoping
that the other side would submit. Of course, because warlmdpthe probability
of escalation is not too high (hence the high likelihood that SQ would obtain.)
Still, the probability of war erupting from a potential dasn equilibrium is strictly
positive at 4%. Conditional on an escalation occurring,ghabability of war be-
comes non-negligible at 11%. Thus, in a crisis a risk of wasaghk exists, which is
what makes the confrontation so dangerous in the first plHoes, even this fairly
simple model tells us quite a lot about crises. We shall see more elaborate
models tell us more.

This MSNE reveals what will turn out to be a fundamental peoblin strategic
interstate interaction. Recall that Figure 1 depicts aasidmn in whichwar is the

1 should note that the equilibrium probabilities we've aded here depend on the exact numbers
we have specified for the payoffs, so one should not take ttsegeaeral probabilities or anything
like that. They just illustrate interesting consequencemfthis setup. As a good thought experi-
ment, try altering the payoffs to one of the actors such thatisrextremely bad for him. See what
probabilities you get. This actually can tell you quite aghibut which side will be more resolved in
a crisis and which side you'd expect to back down more ofteav@rage. Note also that when we
wrote the best responses in terms of the mixed strategiesiase able to find all equilibria, both
in pure and mixed strategies. This suggests that it may beusaful to go directly to this step to
do the analysis instead of finding first the pure-strategylidgia and then trying to figure out the
mixed-strategy ones.



worst outcome for both players and this fact is common knowledge. Because both

players also like the status quo quite a bit (it’s their selmost-preferred outcome),
we can call them “peace-loving.” And yet...optimal ratibhahavior produces a
situation in which there is a strictly positive probabilttyat these actors will go to
war with each other! This is a fundamental result that wels®d in much more

complicated settings and it bears repeating: war is not theome of some evil

men plotting each other’s destruction. Rather, it is thevaitable consequence
of rational players trying to obtain the best possible ontedcapitulation of the

opponent). Tragically, this may sometimes end up produtiiegworse possible
outcome instead.

It is also worth noting that the outcome of the interactioruigertain in the
sense that any one of the four possible outcomes occurs wiitiyee probability
in the MSNE. This indeterminacy is a direct consequence efodhavior of the
actors, and is not due to some environmental chance eventsaRe this distinction
clearer, note that one’s action may have uncertain consegaesimply because
of intervening random factors that are inherently unpradiie. For instance, if |
send a boat with troops to conquer an island, a freak storrd @apsize the boat
drowning everyone on board. Suppose the troops are ceotaioniguer the island
because they are much stronger than the limited opposhmistanders could put
up. Still, the outcome of my action of sending the troops @luncertain: victory
if the troops make it to the island safely or defeat if they'tdrhave no influence
over the freak storm happening, so from my perspective, xipeated utility of
sending the troops is the payoff from victory times the ptolisg of a safe landing
plus the payoff of defeat times the probability of a stormewoint to note here is
that the probability of a storm is a type efivironmental uncertainty: it's a factor
beyond the control of either player.

Now contrast this with the crisis game. Here, one’s acti@o &las uncertain
consequences: escalation may lead to war if the opponepehago escalate too
or it may lead to victory if the opponent does not escalate wAshave seen, my
expected utility from escalation is the payoff from war tsntée probability that
the opponent escalates plus the payoff from victory timespifobability that the
opponent does not escalate. The probability that the oppi@sealates is a type
of strategic uncertainty: it is certainly within the ability of the opponent to conltro
it. The point of this distinction is that strategic intefiact sometimes can involve
this type of uncertainty (induced by the randomizationtsggges) and it is very
insidious because actors create it on purpose. Of courseakies perfect sense
that they would—when revealing your pure strategy to theoogpt would lead
to behavior that will hurt you, you would certainly try to donnd the opponent’s
expectations. This, of course, is going to complicate one/a decision-making
because now it has to take place under this uncertainty.

What's the upshot of all of this? Suppose players engageerctisis game
and the outcome is war. Looking back, this clearly was theswiiing for both



of them. But can we then conclude that players made mistakes?they were
pursuing their optimal strategies that involve an irreblecrisk of war. Hence, the
possibility of war actually occurring is part of their bestagegies and when war
happens one cannot really say that it was because someoreamasstake. Of
course, in retrospect each player would dearly wish to hawesen the other action.
But hindsight is 20/20: choosing non-escalation with déetyabefore war occurs
is simply not optimal. When we look at history and see a warcihwvas clearly
against the interests of both actors, can we conclude tleaadtors were stupid,
evil, or irrational? No—we have now seen how intelligent geeéoving rational
players may inadvertently create a situation in which thay ep at war with each
other. Interpreting history is a lot trickier than lookingevents after the fact and
then judging them in the light of the knowledge that they hageurred. That is,
we know for sure that war happened but the participants in the onisi® unsure
whether their actions would actually precipitate it. Frdreit perspective, the risk
was rational and the gamble was worth it (recall that theafskar in MSNE is 4%
and the probability of outright victory is 16%). We cannabstitute our knowledge
that the bad outcome actually happened for the rational gaadbors made before
it did. Hence, it is quite difficult to pass judgment on suckidiens.

2 The Greenpeace Interview

We use models to discipline our thinking. As economist Paubfhan said, models
are often smarter than we are. They force us to think throsgieis that might be
complicated, unpleasant, or both. Their conclusions, amckerstood, may compel
us to part with deeply held beliefs. A person who understahesimplest model
will reason in far more sophisticated ways than a person wimwk thousands of
facts and figures but who does not have the analytical frameteanake sense of
them. That’'s why we want the models.

To illustrate what | mean, here’s a paraphrased (I am qudtorg memory) in-
terview between an NPR host and a high-ranking Greenpeacdeardhat | heard
on the radio. The idea was the Greenpeace was interestegv@ning some really
large ship from going to some place where it was going to does@ally unpleas-
ant things to the environment. So, Greenpeace’s strategytavaend a bunch of
activists in small boats that would get really close to thip.shhe danger of sinking
them would presumably force the captain to turn the shiprad@nd avoid killing
a bunch of innocent civilians. The following exchange thenwred between the
NPR host and the Greenpeace guy:

NPR Host: Are you not concerned for the safety of your men? You are
sending people into a situation where there’s a really higihof them

dying.



Greenpeace: There is no risk. The ship will turn around and none of
our men will be harmed.

Let’s be charitable andssume that the captain does care about the safety and
health of a bunch of activists who, one should note, haventahily put themselves
in harm’s way. Let’'s suppose that the captain does preferaadasinking their
boats. In fact, let's go ahead and be extremely generousutdt an event be the
worst outcome for the captain. You already see how many assungpivenneed
just to get the argument stacked in Greenpeace’s favor.

So, the captain would like to get the ship to its destinatidh Wreenpeace back-
ing down (shows company is tough and won't allow itself to berced) most to
turning away without activists circling in boats to turniagiay under duress (shows
that the company can be blackmailed) to collision and desast

The activists, on the other hand, strictly prefer that thig sbrns away under
duress (shows Greenpeace is effective and preserves mmént) to ship turning
away on its own (only saves environment) to their boats lacéown and the ship
getting through (shows Greenpeace is ineffective and isfladnvironment) to
actually dying in a collision.

So, imagine the situation: the ship is going full speed tadstination when the
Greenpeace inflatable boat races toward it. They can eitewve or keep going.
If neither swerves, they collide and disaster occurs. Ifthip swerves, the activists
gain in ecological protection and reputational enhanceseih the activists only
swerve, the company gains in dumping its stuff and rubbieggittivists’ noses in
it. If they both swerve, the status quo prevails. Who, if amjovould blink?

As you can probably guess (or shouldn’t guess but verify liyngeup the pref-
erences), this situation can be described with our crisisegao our conclusions
carry over very nicely. The main conclusion is that theresgaificant real danger
of the activists getting killed in this crisis. But this isgmisely what the Green-
peace strategy is actually implicitly relying on: the threktheir activists dying. If
there were no danger, the captain of the ship would just keeamgforcing them
to swerve. So, for the threat to work, they have to acceptgelanough risk that
the captain would believe that he will kill them by contingirOnly then would he
decide to swerve. But the problem, as we shall see lateribihthe time you have
convinced yourself that they are not going to swerve, it maydo late to swerve
yourself. The situation may thus end in disaster anyway.

At any rate, the statement by the Greenpeace person on NRiglete non-
sense because she refused to even dwell on the unpalatpbttsasf the activists’
own strategy. In fact, they were relying on the risk of dyiagtreaten the ship cap-
tain and compel him to change course. The unpleasant trthhti$or this threat to
work, there must be a real danger of dying. We shall have a twerno say about
things like this one later on.
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3 ThePrisoner’'s Dilemma, Revisited?

Can playing a mixed-strategy get you out of the mess with tA@ Recall that for
each strategy of the other player, the best response wagsatha pure strategy
to testify. As we know, for a mixed strategy to be a best resppit must be the
case that all actions to which it assigns positive probghbyjield the same expected
utility. However, in this case, whatever the other playeesiahe best response
is always the same. Therefore, this action will yield thehleigt expected utility
no matter what mixture that other player may use. Hence, &dnstrategy that
assigns positive probability to not testifying cannot beeatlresponse. We thus
conclude that there can be no Nash equilibrium in mixedeggras. Unfortunately,
the unique Nash equilibrium of this game is the one we fourglire strategies. In
it, both players defect and rat on each other.

4 Putting It All Together: Generic Games

We have now seen several strategic games like Chicken, #geHBint, and the
Prisoner’'s Dilemma, and in all cases we used specific nuntberspresent the
payoffs. When the games involve no uncertainty either bezaf chance moves
outside the players’ control or because of mixed stratethegprecise values of the
payoffs do not matter, only their ordinal ranking does. Hegrewhen the game
does involve chance — as it must whenever some player usesed istrategy —
then the cardinal values become important. Why it is so ig &ebhnical (if you
take my game theory course, you will find out), but essentidils because risky
choices involve attitudes toward risks and the sizes of tnefis loom large in
those calculations. When | am running a 20% risk of disasteaf 80% chance of
the other player capitulating, it certainly matters not ehethat disaster is worse
than him capitulating but also just how much worse it is. Tlese it is, the less
willing | become to take my chances. Von Neumann and Morgen'st Expected
Utility Theory in fact specifies the assumptions about pexfees over risky choices
we need to make in order to ensure that we can represent thefeegmces with
numbers and calculate the resulting expected utilities.

This might seem technical, but it matters for us because b wi use games
without necessarily specifying the precise values of thefia. Instead, we would
like to use variables to represent these payoffs, and themiee what happens as
we change their values. Consider a generic two-player samebus-move game
where each player has only two pure strategies. We can eagrdsn a 2-by-2
payoff matrix, as in Figure 2. The mnemonics for the varialalee for “war”, V
for “victory”, D for “defeat”, andS for “status quo”.

We shall now see how varying the ordinal rankings among thasables yields
all the games we have seen so far, and how we can glean sontiemaldnsights
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Player 2
e ~e
E | WW | V.D
E | D,V S, S

Figure 2: The Generic Game.

Player 1

from representing them in this form. First, however, we shalke a crucial as-
sumption that we shall maintain more or less throughout atiefs that we are
going to analyzewe shall assume that our players are not war-loving and do
not like defeat: they always prefer both the status quo and victory to ether
war or defeat. In our notation, we are going to assume that

S>W, S>D, V>W,  V>D.

The only variation we shall allow is between the rankingsSoénd V' — which
we can think of as the strength of the incentive players hatake advantage of
the cooperative behavior of the opponent (do they rewarge@dion with restraint
and obtainS or do they exploit it and obtaiir?), and the rankings d¥ and D
— which we can think of as their fear of being exploited (doytipeefer to let it
happen and obtaif, or would they rather avoid it and obtai#i ?).

We are making these assumptions because otherwise ountsgidl be super-
ficial: it is not going to be very helpful if we found out thataylers go to war in
equilibrium when they both value war the most. This is notap that this cannot
happen (sure it can!) but that the analysis is trivial (and bardly needs all this
complicated game-theoretic machinery to do it). It woulavhech more interesting
if we found that players go to war in equilibrium even thougarws their least-
preferred outcome. If this happens, and we understand wihyeis (game-theory
to the rescue!), then we will have a deeper understandingeopossible reasons
for conflict. This understanding can then help us analyzgshctisis cases and go
beyond surface assertions about the causes of some bebawibtier. This is what
we are going to be doing for the rest of the course, which is wlyvish to make
our models as useful and interesting as possible.

What can we say about this game? We know {l#ate) will be an equilibrium
wheneverW > D. Moreover, it will be the unique equilibrium ¥ > S too. In
other words, if the complete ordering is

V>S>W=>D,

then the game is Brisoner’s Dilemma and its unique equilibrium yields the pay-
offs that are second-worst for the players. When the feaewofdexploited ¥ >
D) combines with a desire to take advantage of the other p{@&yer S), then play-
ers will be unable to coordinate on a cooperative outcomarddgss of the amount
of communication they are allowed to engage in.
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If, on the other handS > V, then(~E, ~e) will be an equilibrium as well.
When the ordering is
S>V>W>D,

then the game is&ag Hunt, and it has two-pure strategy equilibria, W{thE, ~¢)
being the one both players prefer (it, in fact, yields thehbig possible payoff for
each player), but whergr, e) is risk-dominant, making it more likely for the play-
ers to coordinate on that profile and obtain their next-tostvpayoffs. Thus, mak-
ing the status quo more attractive — which eliminates th&elés take advantage
of the other player — can help, but the resulting situatiohi¢lv still has the fear of
being exploited looming as the worst possible outcomd)stksents players with a
difficult dilemma where the outcome can be very dependenhemmount of trust
they have for each other. In most circumstances, this trikhat be enough to
overcome to fear, and players will again end up with theit#iexworst outcomé.

You might be tempted to conclude that perhaps it is the fedreofg exploited
that is causing the problem here, so let’s suppose playenedoave it(D > W)
but that they still want to take advantage of each other- S. The resulting
preference ordering will be

V>S>D>W,

and you can verify that this makes thi$same of Chicken. The two pure-strategy
Nash equilibria ard E, ~¢) and (~FE, e) but we know that there is going to be
another one in mixed strategies as well. To find it,detndg be probabilities with
which player 1 and player 2 escalate, respectively. Theagdegayoff for player
1 can be computed as follows:

EUl(E) = QWl + (1 —Q)Vl = Vl —Q(Vl — Wl)
EUl(NE) = QDl + (1 —Q)Sl = Sl —Q(Sl — D1)

(We are using subscripts on the payoffs to keep track of whlayer we're referring
to.) We know that player 1 will only be willing to mix when irftérent between
his pure strategies, so in the MSNE it must be the case that/EE\J= EU, (~F).
Solving this tells us that player 1 will mix only when he thgtkat player 2 is going
to escalate with probability

. Vi—S8i
VM =S+ D, W

q

(Note that the preference ordering ensures that this isid pabbability; i.e., a
number between 0 and 1.) We further conclude that wheneagepll is mixing,

2In fact, the Stag Hunt, like the Chicken game, also has aribguim in mixed strategies. It is
specified exactly in the same way as we shall do for the Chigkeme, so there is no need to do it
here.
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player 2 must be mixing as well, which in turn pins down thecfse probabil-
ity with which she must expect player 1 to escalate, which weve by setting
EU2(€) = EUZ(N(Z), or:

i V2_S2
B Vo—=8+ Dy — Wy,

D

We already know that in the MSNE the probability of war is p@si but we can
now say something more about the crisis. For example, we ocarask questions
like: “What happens to the probability that player 1 esadaft player 2’s payoff
from victory (V,) increases?” Try answering this first without analyzingniedel.
You might reason as follows: well, since player 2’s payoénfr victory is now
larger than before and she can only get this outcome by ésaplahe should be
more willing to escalate. In other words, increasing theqgfiafpr victory should
make her more willing to take risks to achieve that outconeey should go up.
But since this makes escalation more dangerous for playad hs payoffs have
not changed, he should be less willing to escalate. Thusnthease in the victory
payoff for player 2 must mean that she is more likely to setiheeorize without a
fight, and that the overall likelihood of war is smaller.

The first surprise is that player 2 will not, in fact, escalai¢éh a higher prob-
ability in equilibrium. As you can see from the expressiom\ad ¢ is entirely
independent of’,. This is because in equilibrium her escalation probahiéfiects
player 1's expectations about her behavior that ntfakeindifferent, and this cal-
culation naturally only involves player 1's payoffs. Siribese have not changed,
g will not change either.

But how can that be? Our intuition seems to demand that aeaserinl, must
have some effect on behavior... and it does, just not whewengld first expect
it. Consider player 1's strategy. You can see thas a function ofl,, and you
can easily verify that it is, in fact, strictiycreasing in that value? In other words,
increasing player 2’s payoff from victory must make playence likely to escalate
in equilibrium! What?!?! This just made matters even monefasing!

This, however, what being “in equilibrium” really means.nieans that players
must be willing to stick to their strategies. Initially, gler 2 is indifferent and so
willing to play the mixed strategy. When her payoff from want increases and
nothing else changes, however, she will no longer be willongix: the expected
payoff from escalation given the probability that player scaates will now be
strictly greater than the expected payoff from not esaadatand as a result she
would actually strictly prefer to escalate. But if she isrgpto escalate, then player

3Just take the derivative:

dp_ Dz—Wz -0
dVa  (Va— Sy + Dy — Ws)? .
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1 will no longer be willing to mix either. In other words, th&aegies would
no longer constitute an equilibrium. If player 2 is going tontinue to mix in
equilibrium, it must be that she continues to be indifferaftér V, increases, and
since none of the other payoffs have changed, the only wayctm happen is if
player 1's probability of escalation increases as well.c8ithis puts more weight
on the war outcome, it decreases the expected payoff froalagsm for player 2
even whenl, goes up. Thus, if the mixed strategies are going to remaiimajt
an increase i, will be met with an increase ip.

In other words, our intuitive logic has some parts right (etlgat increasing’,
will make player 2 prefer escalation) but fails to consides entire effect (e.qg.,
what happens when you put this fact together with the remerdg that players
choose best responses). This is why simple intuition mightetimes prove quite
misleading.

Finally, observe that since goes up and remains constant, an increaseli
also leads to an increase in the equilibrium probability af,which is PéWar) =
pq. Thus, an increase in the value for victory for one of the ptaynakes the other
one more aggressive, and it makes it more likely that thelyamid up fighting.

Analogous arguments establish that when a player’s valugdoincreases, then
the probability with which his opponent escalates in equilim must increase as
well (p is increasing in¥; justlikeq is increasing i#;). This also seems counter-
intuitive: a player’s dislike of fighting decreases but assutt his opponent be-
comes more likely to escalate. The overall effect might lss leurprising: the
equilibrium probability of war increases.

Conversely, when a player’s value for the status quo ineeabien his oppo-
nent’s probability of escalation must go dowm i§ decreasing irb;). This is sur-
prising when you recall that the opponent prefers to takeaathge of such failures
to escalate. The overall effect, however, might be what wmeet: the equilibrium
probability of war decreases. At least we obtain an unandugyrediction: if one
is interested in preserving peace, then making the statmsnque valuable (or war
more costly) is the way to go.

5 Coming Up Next...

We have two more things to do before we can analyze severalrtamt games
that relate to our study of national security. First, we havéearn how to ana-
lyze dynamic games. As you may have noticed, Nash equitibtakes the entire
strategies as given and requires them to be best responsash@ther. However,
we shall see that this solution concept has a significantastming because it ig-
nores the fact that one player may move before the other,feidjiven that move
the player’s response may not be optimal. Again, Nash dxiuitn only considers
the entire strategies for optimality, not parts of them. \Wallslearn the solution
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concept callegberfect equilibriumthat takes care of that.

Once we learn how to analyze dynamic games by finding thefegieequilibria,
we only need to learn how to analyze games of incompletenmdition. We shall
see that in that case, the solution must also incorporateehefs of the players
because their strategies will be optimal conditional onlibkefs they have. This
solution concept is callesequential equilibrium, and we shall learn how to com-
pute it.

We shall then use all of this to analyze several very impogames from which
we shall learn the ideas of credible commitments, signabaggaining, and screen-
ing, which form the core of the theories of the use of forcetedence and com-
pellence. All of these we shall then apply in our study of dngtof the Cold War
and after. Finally, we shall look at several current protdehrough the lens of his-
tory and analytical analysis to see whether we can form ani@piabout national
security strategies one may pursue in these circumstances.
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