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Abstract

I present a model in which two players bargain using the
alternating-offers protocol while costly fighting goes on
according to a stochastic process that moves some player
closer to complete victory. There are many Nash equilib-
ria and a large range of payoffs can be supported in equi-
librium. However, there is a unique Markov perfect equi-
librium, which is efficient, and in which offers depend on
players’ prospects in war as well as the current military
position.

1 Introduction

In 1968, reviewing ten years of contributions to the Jour-
nal of Conflict Resolution, Elizabeth Converse remarked,
“I get the feeling that, for most JCR contributors, once a
war happens, it ceases to be interesting” (Converse 1968,
pp. 476-7). Recently, political scientists have begun in-
creasingly to address this vexing problem.1

Before we can begin exploring the incentives for ending
wars, a model of wartime negotiations is needed. I de-
velop a basic model that is intended to serve as a baseline
for exploring the various issues that impinge on the war-
ring parties’ incentives to resolve the conflict. I analyze
the model under complete information to demonstrate
that the stochastic element of warfare, that is, the proba-
bilistic nature of outcomes on the battlefield victories, is
not sufficient to explain why wars continue. I show that,
contrary to common arguments that blame the expansion
of demands following victories for the inability to reach
a settlement, this expansion is always balanced and out-
weighed by the incentives to conclude the costly conflict
as soon as possible. I also find that the shadow of the fu-
ture has somewhat surprising effects on the behavior of
states that are nearing defeat.

I model war as a bargaining process, where parties
alternate making proposals and counter-proposals, and
where fighting occurs while disagreement persists. How-
ever, this process cannot continue indefinitely because
eventually one side will win the war, although the timing
and the winner are determined probabilistically. As war
progresses, both sides observe how well they are doing
so far and evaluate their prospects of the future. Under

∗Email: slantchev@ucsd.edu.
1There is some work done in a less theoretical vein using

various perspectives including rationalist, psychological, bu-
reaucratic, and Marxist, by Carroll (1969), Fox (1970), Halperin
(1970), Kecskemeti (1970), Foster & Brewer (1976), Handel
(1978), Oren (1982), Manwaring (1987), and Engelbrecht (1992).
Pillar (1983) provides a useful bargaining view of war termina-
tion, and Goemans (2000) presents a thoughtful study of the
politics of war termination during the First World War.

complete information, I find that there is a unique Markov
perfect equilibrium, in which states immediately settle.
Thus, although bargaining is superimposed on a stochas-
tic warfare process, if states agree in their expectations,
then they can reach a mutually satisfactory agreement.

2 Related Literature

The strategic approach to bargaining theory, initiated by
Ståhl (1972) and Rubinstein (1982), is particularly suited
to modeling situations where players’ reversion points
(payoffs in case of breakdown of bargaining) and the size
of the benefits to be distributed can evolve endogenously
and/or stochastically. These models generally have ef-
ficient subgame perfect equilibria under complete infor-
mation, in which agreement is reached immediately.2

The literature on strategic bargaining in stochastic envi-
ronments is relatively new. Merlo & Wilson (1995) provide
a general n-player infinite-horizon complete information
bargaining model, in which the identity of the proposer
and the size of the pie follow a general Markov process.
They find some that some subgame perfect equilibria are
inefficient because players may delay agreement in the ex-
pectation that the benefits to be divided will increase.

Furasawa & Wen (2001) consider a model in which the
interim disagreement payoff is determined stochastically
in each period, and where the proposer can choose to de-
lay making an offer. They find a unique perfect equilib-
rium that is inefficient because of a stochastically delayed
agreement. The ability to delay agreement is a necessary
condition for existence of the inefficient equilibrium.3

There is a small, but expanding, formal literature on
bargaining while fighting. Although he did not analyze
the model he proposed, Wagner (2000) was the first to use
a Rubinstein-type alternating-offers divide-the-pie game
with an exogenous risk of breakdown to model the dy-
namics of intrawar bargaining (Binmore, Rubinstein &
Wolinsky 1986, Osborne & Rubinstein 1990).

Powell (2001) proposes an alternative specification,
where after an offer is rejected, states can decide whether
to fight or not. If either state attacks, then the game
ends with some exogenous probability; otherwise, states
pay costs for fighting. Essentially, this approach trans-
forms the war outcome into an endogenous inside option
(Muthoo 1999). He distinguishes between a “dissatisfied”
state, which prefers fighting to the finish to living with

2See Muthoo (1999) for a an excellent review.
3The model in this paper can be conceptualized as one with

variable interim disagreement payoffs (e.g. if we interpret the
expected payoff from fighting in Definition 4.1 in this way), and
thus it is not surprising that in our case a unique efficient per-
fect equilibrium always exists, confirming the necessity condi-
tion described above.



the status quo, and a “satisfied” one, which does not. The
complete information equilibria are efficient and the op-
timal offer depends on how dissatisfied a state is. Powell
then analyzes two possible forms of uncertainty: about
the distribution of power, and about the opponent’s costs
of fighting. This permits a characterization of the screen-
ing process on the basis of the time it takes to marshal
resources in order to fight, as opposed to signaling with
an offer. Generally, he finds that the results of previous
costly-lottery models carry over to war as a process mod-
els.

Filson & Werner (2002) model the process with alternat-
ing phases of negotiations and fighting in case no agree-
ment is reached. Initially, states control certain amounts
of resources and consume benefits. Resources enter the
payoff functions directly but are also important for a
state’s ability to continue fighting because if resources
fall below some threshold level, then a state is assumed
defeated and loses its benefits. There is one-sided uncer-
tainty about the probability of winning one battle, which
results in a screening equilibrium, in which outcomes de-
pend on the attacker’s beliefs about the type of defender.

The model presented here is an extension of the
stochastic model of warfare analyzed by Smith (1998),
where the two states fight over “forts” and derive util-
ity from the number of forts in their possession. Because
controlling more forts increases the payoffs directly, the
model in effect makes war profitable by assumption.

Kim (2001) builds upon this work by modeling the two
states as bargaining over the division of a finite number
of districts of military and intrinsic value.

There is asymmetric information about player 2’s fight-
ing costs, and only the uninformed player is allowed to
make offers. In the unique perfect Bayesian equilibrium,
the familiar screening process occurs, in which high cost
types of player 2 drop out sooner by accepting smaller of-
fers. The model presented here is related to this work as
well, although it admits discounting, offers a completely
different way of conceptualizing uncertainty, assumes no
intrinsic value of the object contested militarily, and does
not restrict the role of the proposer.

Smith & Stam (2001) provide an modification of this
model that presents the most appealing formulation that
is designed to account for the instrumental role of war-
fare. They superimpose a one-sided bargaining process
according to which states negotiate a division of bene-
fits while fighting. Players are infinitely patient (there is
no discounting) and only one player is allowed to make
offers. Somewhat controversially, the authors introduce
asymmetric information in a non-standard way. They
posit that players have divergent beliefs over the eventual
outcome of the war and then analyze the model by ignor-
ing the crucial information conveyed by the behavior of
the opponent.

I also analyze warfare as an instrument used in pursuit
of political (distributional) objectives, and so my model
derives from, and extends, that of Smith & Stam (2001).
I introduce two important modifications that turn out to
be crucial: states have time preferences (they discount the
future), and the bargaining protocol allows both sides to
make offers. In a related paper, I analyze this model under
asymmetric information using standard game-theoretic
techniques and arrive at conclusions strikingly different
from those of Smith & Stam (2001). Both under com-
plete information and under uncertainty, the extensions
of their model drive the results to a large extent.

3 The Model

Two players, i ∈ {1,2}, bargain over a two-way partition
of a flow of benefits with size π . An agreement is a pair
(x,y), where x is player 1’s share, and y is player 2’s
share. The set of possible pairs is

X =
{
(x,y) ∈ R2 : x +y = π and 0 ≤ x,y ≤ π

}
.

Players have strictly opposed preferences and each is con-
cerned only with the share of benefits it obtains from the
agreement. Because a share x identifies a distribution
uniquely, let x be equivalent to the pair (x,π − x), and
y be equivalent to the pair (π − y,y). The status quo
distribution of benefits is (s1, s2) with s1 + s2 = π .

The two players bargain according to the alternating-
offers protocol (Rubinstein 1982). Players have a com-
mon discount factor δ ∈ (0,1), and act in discrete time
with a potentially infinite horizon and periods indexed by
t (t = 0,1,2, . . .). In even-numbered periods, player 1 pro-
poses a division x ∈ X to player 2. If player 2 accepts that
proposal, an agreement is reached, and the game ends
with players receiving their shares in (x,π −x). If player
2 rejects the proposal, then players fight a costly engage-
ment, which may improve the relative military position
of a player, and the period ends. Player 2 makes a coun-
teroffer y ∈ X in the next period. If player 1 accepts,
the game ends and players receive their payoffs from the
agreement (π −y,y); if it rejects, they fight another mili-
tary engagement. The game continues until an agreement
is struck or until one of the players is decisively defeated.
If a player decisively defeats the other, then it obtains
the entire flow of benefits π . Each military engagement
is costly, and states suffer a constant per-period loss of
utility, reducing their instantaneous per-period wartime
payoffs to bi < si (and so b1 + b2 < π ).

War is modeled as a stochastic process of attrition. It
is a homogenous Markov chain with two absorbing states:
victory and loss.4 The current military position of a player
at time t captures the player’s relative overall success
from all engagements that have occurred up to time t.
Let N ≥ 2 denote the finite number of military objectives
and let k be the number of objectives achieved by player
1. The set of possible states is K = {0,1, . . . ,N}. At time
t, player 1’s current military position, kt ∈ K, is the differ-
ence between the total number of its victories and losses
in battles that have occurred in periods (0,1, . . . , t − 1).
The state variable kt is an indicator of relative military
advantage at time t and summarizes the whole history of
the war up to that point in time; k0 is the position at the
outset of war.

One battle over one objective occurs in each period.
Player 1 wins the fight with probability p, and loses with
probability 1 − p.5 If player 1 wins the battle at time t,
then kt+1 = kt + 1, and if it loses, then kt+1 = kt − 1. If
kt = 0, player 1 is militarily defeated and the game ends
with player 2 imposing the settlement (0, π). If kt = N,

4See Grimmett & Stirzaker (1992) and Norris (1997) for ran-
dom processes.

5It is possible to relax this assumption in two ways: the proba-
bilities of victory and defeat need not sum to 1; the probabilities
of victory and defeat vary according to the current military po-
sition. It is not clear a priori how probabilities should vary with
battlefield success. For example, sometimes early failure mobi-
lizes the will to fight (e.g. Britain after Dunkirk in May 1940) but
other times it does not (e.g France in June 1940).
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player 2 is militarily defeated and player 1 imposes the
settlement (π,0).

Let P = (qij : i, j ∈ [0,N]) be the stochastic matrix,
where qij = Pr(kt+1 = j : kt = i). Clearly, the transition
matrix P is square (N + 1)× (N + 1). The probabilities of
victory and defeat described above induce a probability
distribution for each row of P such that

qij =




p if j = i+ 1 and 0 < i < N
1− p if j = i− 1 and 0 < i < N
1 if i = j and i ∈ {0,N}
0 otherwise

Let θ(P) denote the temporally homogenous Markov pro-
cess with stochastic matrix P realizing values in K =
{0,1, . . . ,N}. For t = 0,1, . . ., let θt ≡ (θ0, θ1, . . . , θt) de-
note the state history at time t with typical realization
(k0, k1, . . . , kt) where the elements k ∈ K are referred to
as states.

The stochastic bargaining game is played as follows.
Player 1 is the proposer in all even periods and responder
in all odd periods, when player 2 is the proposer. In each
period t, a state k is realized and the proposer i offers
a partition in X. The other player responds by either ac-
cepting or rejecting the proposal. If the offer is rejected,
both players obtain their per-period instantaneous pay-
offs bi, and a new state is realized in the next period ac-
cording to θ(P). The stage game continues until either
a partition is accepted or one of the absorbing states is
realized.

A strategy specifies the offer that a player must make
when it is the proposer, and its reaction to any offer that
its opponent makes. In every period t, the information
set for the proposer consists of the history of rejected
offers and realizations of the state variable. A pure be-
havioral strategy specifies the current proposal as a func-
tion of this history. In the same period, a pure behavioral
strategy for the responder specifies a function from this
history concatenated with the current offer to an action
in the set {Y ,N}, which prescribes either acceptance or
rejection of the current offer.

To specify the strategies formally, let ht denote the
history of play up to period t. Recall that if t is even,
then player 1 is the proposer. In what follows, I describe
the strategies for player 1, the strategies for player 2
can be specified analogously. Let xt denote the partition
(x,π−x) that player 1 offers at time t, and let yt′ denote
the partition (π −yt′ , yt′) that player 2 offers at time t′.

At some even date t player 1 knows ht ={
〈k0, x0〉, 〈k1, y1〉, . . . , 〈kt−1, yt−1〉, kt

}
, which consists of

t realizations of the state variable (not counting the ini-
tial state k0), and t − 1 previous offers and counteroffers.
At some odd date t′, the history ht′ consists of ht′−1 con-
catenated with (xt′−1, 〈kt′ , yt′ 〉), that is, player 1’s offer
in the previous period, the new realization of the state
variable, and the current offer of player 2. Since the game
only continues while players reject proposals or until one
of the absorbing states is realized, rejections are omitted
from the specification. Taking Ht to be the set of all such
histories, a pure behavioral strategy for player 1, Σ1, is
a sequence of functions {σ 1

t }∞t=0 such that σ 1
t : Ht → X

when t is even, and σ 1
t : Ht → {Y ,N} when t is odd. For

example, σ 1
2 (〈k0, x0〉, 〈k1, y1〉, k2) specifies player 1’s of-

fer at time t = 2 assuming that it offered x0 in period
0, its opponent rejected it and countered with y1, which
player 1 rejected, and the realizations of the state variable

were k1, and k2. Note that I only consider pure strategies
throughout this article.

If players adopt strategies σ 1 and σ 2, the outcome
of the game is R(σ 1, σ 2) = 〈R1(x, t), R2(x, t)〉 where
Ri(x, t) specifies player i’s expected payoff if agreement
on partition x is reached at time t, and where (x, t) are
determined from the strategies. For example, suppose
the strategies specify that players reject all offers until
time T , at which point some x is proposed and accepted.
The payoffs then will be Ri(x, T), which, loosely speak-
ing, represent the payoff from partition x agreed on in
period T times the probability that the game continues
until T plus the expected payoff if the game ends prior to
T times the probability that it ends. The precise defini-
tion of Ri(·) is somewhat convoluted and is relegated to
Appendix B.6

Players maximize the time-averaged discounted sum of
per-period payoffs:

(1− δ)
∞∑
t=0

δtr it

where r it is player i’s instantaneous payoff in period t,
which equals bi if players disagree, 0 if player i loses the
war, π if it wins, and i’s share of benefits if players termi-
nate the war with a settlement.

It is worthwhile to note that this model avoids some
pitfalls associated with prevalent ways of modeling war.
First, unlike the costly-lottery approach, it does not re-
duce war to a single-shot event, and permits analysis of
dynamics. Second, unlike the infinitely repeated game ap-
proach, as commonly used, it does not go against the in-
tuition that the process does not last indefinitely, or even
a large number of periods.7 Instead, this model captures
the dynamic nature of the process without either fixing
an arbitrary number of periods or allowing it to extend
indefinitely, while incorporating the time-dependence of
each state.

4 Nash Equilibria

Perpetual disagreement will be denoted by (·,∞). In this
case players receive their per-period disagreement pay-
offs while fighting lasts and then the winner receives the
entire flow of benefits forever after the war ends.

Definition 4.1. The function Wi
k : K → [0, π] is

player i’s payoff from fighting to the finish starting in
state k. It is defined recursively for 0 < k < N:

W 1
0 = W 2

N = 0

W 1
N = W 2

0 = π
Wi
k = (1− δ)bi + δ

[
pWi

k+1 + (1− p)Wi
k−1

]
Appendix A shows that Wi

k has a closed form. Since
0 ≤ bi < π , it follows that Wi

k ∈ [0, π] for all k. Pro-
vided that the strategies are such that they specify perpet-
ual disagreement, the outcome is 〈R1(·,∞), R2(·,∞)〉 =
〈W 1

k0
,W 2

k0
〉.

6In addition to the derivations and proofs in the appendices,
several computer programs (in C++and Gauss) that perform nu-
merical simulations and compute the examples are available
from the author upon request.

7For an especially illuminating discussion of this topic, see
Rubinstein (1991, p. 918).
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The following claim, which is straightforward to verify,
establishes an important property of the stochastic bar-
gaining game.

Claim 4.1. W 1
k + W 2

k < π for any δ ∈ (0,1) and all
k ∈ K.

That is, there is no state in which players lack incen-
tives to bargain. Since the payoffs players expect to get if
war is fought until the end sum to less than the total ben-
efits they can redistribute, there always exists a surplus
that can be allocated to make both players better off with
a bargain. That is, there are always gains from a negoti-
ated agreement.

The set of Nash equilibria for the bargaining game with
stochastic fighting under complete information is very
large. Instead of attempting to characterize all Nash equi-
libria, I shall only provide a characterization of the set of
equilibrium payoffs. Perhaps not surprisingly, every dis-
tribution of benefits that is better for both players than
their expected payoffs from fighting to the bitter end from
the initial state can be supported by some Nash equilib-
rium.

Lemma 4.1. There exists no equilibrium, in which
player i’s payoff is less than Wi

k0
.

Proof. Suppose some equilibrium yielded the ex-
pected payoff x < Wi

k0
to player i. The only equilibria

that may produce such an outcome are those where the
game ends with an agreement at some time t < ∞. How-
ever, player i can deviate to a strategy that rejects all of-
fers and demands the entire π every time i gets to make
a proposal. The expected payoff from this strategy isWi

k0
,

making a deviation profitable. This contradicts the sup-
posed optimality of the original strategy, and establishes
the claim. Q.E.D.

Lemma 4.1 establishes the bounds on the payoffs that can
be supported in equilibrium. Expressed in terms of player
1’s share, the range of equilibrium payoffs is thus x ∈
[W 1

k0
, π −W 2

k0
].

Proposition 4.2. Any partition x is a Nash equilib-
rium outcome if and only if

x ∈ [W 1
k0
, π −W 2

k0
]

Proof. Necessity follows from Lemma 4.1. To estab-
lish sufficiency, we must show the existence of strategies
that yield x in equilibrium provided x is in the prescribed
range.

Consider the following simple strategies: both players
demand π and reject all offers except in period t, when
player 1 demands x̂ and player 2 accepts it. These sim-
ple strategies are very attractive because there is only one
opportunity to strike a bargain, and so there is only one
interesting deviation to examine, all others being trivial.
This is the deviation where player 1 does not offer (or
player 2 does not accept) x. Because such a deviation
yields the expected payoff from fighting to the bitter end,
comparisons are easy.

We must find a pair 〈x̂, t〉 such that R1(x̂, t) = x
and R2(x̂, t) = π − x. It is readily verified that the
pair 〈x,0〉 satisfies both conditions, and so the strategies
with payoffs 〈R1(x,0), R2(x,0)〉 constitute a Nash equi-
librium. Q.E.D.

Proposition 4.2 implies that every distribution that falls
within the range specified by Lemma 4.1 can be supported
in a Nash equilibrium where player 1 proposes it only in
the initial period and then always demands π and rejects
all offers. Given such a strategy, player 2 can do no better
than accept π − x immediately. Conversely, given that
player 2 always demands π and rejects all offers except
π − x in the initial period, player 1 can do no better.

Such Nash equilibria have the unattractive property
that they are not subgame perfect. In particular, they re-
quire that players threaten to reject any offer, even ones
that will be fairly attractive if made at opportune mo-
ments. For example, suppose player 2 deviates and re-
jects 1’s initial offer. Following the Nash strategies re-
quires now fighting to the bitter end. However, suppose
war develops in such a way that player 1 comes very close
to defeat, i.e. k = 1 < k0. Can it credibly threaten to reject
any offer? Suppose player 2 offers it a little more than
the certainty equivalent from fighting from the new state.
Accepting such an offer is strictly better for player 1 from
its current vantage point. Thus, the threat to reject it is
not credible. Nash equilibrium, however, has no bite for
such considerations because it only requires optimality
on the equilibrium path. In the following section, I ex-
amine the existence of an equilibrium where threats and
promises are credible in the sense that if players must
implement them, it will be in their interest to do so. The
subgame perfection refinement requires that play be op-
timal whether or not it occurs on the equilibrium path.

5 The Markov Perfect Equilibrium

Given the model of warfare described the previous sec-
tion, it seems natural to restrict attention to bargaining
strategies where offers and acceptance rules depend on
the current military position and the expectations about
the eventual outcome and duration of war. These strate-
gies, which condition on the realization of a state vari-
able are commonly known as Markov. In this model,
the only variable that influences current and future pay-
offs is the current military position. Because the class
of Markov strategies requires that equilibrium depends
only on payoff-relevant history, players’ strategies at time
t must depend only on kt .8

I shall be looking for Markov perfect equilibria, that
is, perfect equilibria in Markov strategies (Fudenberg &
Tirole 1991). A pair of strategies forms a Markov perfect
equilibrium (MPE) if, and only if, each player’s strategy
maximizes its intertemporal payoff at any time t, given kt
and assuming that henceforth both states play according
to their respective reaction functions. In other words, a
MPE is a profile of Markov strategies that yields a Nash
equilibrium in every proper subgame.

This class of equilibria has several remarkable proper-
ties. First, MPE often succeeds in eliminating or reducing
the multiplicity of equilibria in dynamic games. Second, it

8Since Nash equilibrium may rely on non-credible threats
and promises off the equilibrium path, the solution concept I
shall use is that of subgame perfect equilibrium, which requires
that each player’s strategy is optimal in every proper subgame,
whether or not this subgame is ever reached when players fol-
low their strategies (Selten 1975). In other words, an equilibrium
is subgame perfect if the strategies form a Nash equilibrium in
every subgame.
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eliminates the problem of states reacting to military posi-
tions they had several periods in the past. Although the
restriction to payoff-relevant history makes complicated
punishment strategies impossible, these strategies are of-
ten hard to justify intuitively.9

I now derive a useful property that all MPE possess.
Suppose that player 2 has to make an offer at some time
t when the state is k. Since player 1 expects to get W 1

k
if it rejects the proposal and continues fighting, player 2
must offer it at least W 1

k . That is, player 2 must offer 1
at least the value of its expected resolution of war, oth-
erwise player 1 would reject the proposal because contin-
uing yields a larger expected payoff. However, since W 2

k
is the present value of the expected resolution of war for
player 2, it follows that player 2 will never propose for
itself less than this amount either. This gives rise to the
following lemma, which establishes a necessary condition
for the equilibrium offers.

Lemma 5.1. Let k be some realization of the Markov
process at time t, and let x∗k and y∗k be the optimal offers
of player 1 and player 2, respectively. Then, in any MPE,

x∗k ∈
[
W 1
k ,π −W 2

k

]
and y∗k ∈

[
W 2
k ,π −W 1

k

]
.

In equilibrium neither state would accept less than its
certainty equivalent for fighting, which places the bounds
on equilibrium proposals. These bounds restrict offers to
be decidedly different (whenever state payoffs are strictly
greater than 0) from the Rubinstein model whenever a
country is nearing victory or defeat. That is, while in the
original alternating-offers model players split the benefits
evenly when the time between offers goes to zero (or in
any event the advantage of the player who moves first is
captured by the discount factors), in this model military
position affects expectations directly and a player close
to victory will not agree to less than the expected value
of victory, which may well be close to taking the entire
flow of benefits. These considerations are elaborated in
the text that follows.

The interval in the lemma represents the gains from
concluding a negotiated settlement. From Claim 4.1 this
interval always exists. Thus, not surprisingly, the follow-
ing section establishes the existence of an efficient equi-
librium, in which players split this surplus depending on
the initial state of the world.

5.1 Existence and Uniqueness of MPE

In a no-delay MPE, a player’s equilibrium proposal is im-
mediately accepted by the other player. In a station-
ary MPE, players always make the same state-dependent
offers (that is, offers depend on the realization of the
stochastic process but are otherwise time-invariant). In

9An excellent discussion of the subtle differences between
Markov strategies and traditional supergame punishment strate-
gies appears in Tirole (1993, pp.253-6). A systematic frame-
work for analyzing infinitely repeated games with discounting
appears in Abreu (1988). For an illuminating discussion of the
advantages of MPE, see Maskin & Tirole (2001). It is worth noting
that the Rubinstein-type bargaining models, such as this one, are
not repeated games, and the traditional Folk Theorem results do
not apply because deviations end the game. For a model that
can support punishment during play, see ?, where complicated
strategies are made possible by the existence of a conflict game
outside the bargaining process.

any stationary no-delay MPE, player 1 must offer player
2 at least what that player expects to obtain by rejecting
a proposal. Since in this equilibrium player 2’s offer is
immediately accepted (or else the game ends), player 1’s
offer must satisfy, for 1 < k < N − 1

π − x∗1 = (1− δ)b2 + δ
[
py∗2 + (1− p)π

]
π − x∗k = (1− δ)b2 + δ

[
py∗k+1 + (1− p)y∗k−1

]
(1)

π − x∗N−1 = (1− δ)b2 + δ(1− p)y∗N−2

Similarly, player 2’s offer must satisfy

π −y∗1 = (1− δ)b1 + δpx∗2
π −y∗k = (1− δ)b1 + δ

[
px∗k+1 + (1− p)x∗k−1

]
π −y∗N−1 = (1− δ)b1 + δ

[
pπ + (1− p)x∗N−2

]
This defines a system of 2(N−1) simultaneous equations.
For example, for N = 4, we have (letting zk ≡ x∗k and
zk+3 ≡ y∗k for k = 1,2,3)

π − z1 = (1− δ)b2 + δ
[
pz5 + (1− p)π

]
π − z2 = (1− δ)b2 + δ

[
pz6 + (1− p)z4

]
π − z3 = (1− δ)b2 + δ(1− p)z5

π − z4 = (1− δ)b1 + δpz2

π − z5 = (1− δ)b1 + δ
[
pz3 + (1− p)z1

]
π − z6 = (1− δ)b1 + δ

[
pπ + (1− p)z2

]
Letting z = (z1 z2 z3 z4 z5 z6)T , this can be compactly
written in the familiar matrix form Az = w, where the
coefficient matrix A is given by:


1 0 0 0 δp 0
0 1 0 δ(1− p) 0 δp
0 0 1 0 δ(1− p) 0
0 δp 0 1 0 0

δ(1− p) 0 δp 0 1 0
0 δ(1− p) 0 0 0 1




and

w =




π − δ(1− p)π − (1− δ)b2
π − (1− δ)b2
π − (1− δ)b2
π − (1− δ)b1
π − (1− δ)b1

π − δpπ − (1− δ)b1




It is trivial to verify that the coefficient matrix is full
rank, which implies that it is nonsingular and therefore
the equation has a unique nonzero solution. Computing
the closed form of each zi expressed in terms of the ex-
ogenous parameters is possible, but is extremely tedious,
and, because the resulting expressions are very long,
prone to error. The complications become worse very
quickly as N increases, making the direct approach im-
practical. Instead, I will demonstrate that for any N ≥ 2,
the equivalent system of equations always has a unique
solution. I will then provide several examples with inter-
esting values of the exogenous parameters to give some
intuition of how the equilibrium offers behave.

Fix some arbitrary N ≥ 2 and let n = N − 1. Label
the equilibrium offers such that x∗1 , x∗2 , . . . , x∗n corre-
spond to z1, z2, . . . , zn; and y∗1 , y

∗
2 , . . . , y∗n correspond to

zn+1, zn+2, . . . , zn+n. Construct the 2n × 2n matrix A of
coefficients in the usual way and let w > 0 be the corre-
sponding RHS vector. The following lemma, whose proof
is in Appendix C, establishes the claim.
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Lemma 5.2. There exists a unique z∗ = A−1w.

Thus, for any N ≥ 2, the system of simultaneous equa-
tions has a unique solution, z∗, which defines the propos-
als that satisfy the no-delay and stationarity properties of
MPE. It now remains to be shown that there exists a pair of
strategies that supports these proposals in equilibrium.
The following proposition, whose proof is in Appendix C,
characterizes this unique pair of Markov strategies.

Proposition 5.3. The stochastic bargaining game
with complete information has a unique no-delay Markov
subgame perfect equilibrium, in which player 1 always of-
fers x∗k , accepts all offers x ≥ x∗k , and rejects all offers
x < x∗k , where k is the realization of θ(P), and x∗k is the
kth element of z∗. Player 2’s strategy is defined analo-
gously. Agreement is reached immediately on x∗k0

.

Proposition 5.3 establishes the existence of a unique
stationary no-delay Markov perfect equilibrium of the bar-
gaining game under stochastic warfare. It is clear from
the construction of the optimal offers that the neces-
sity condition of Lemma 5.1 is satisfied. Because of the
alternating-offers protocol, the proposer enjoys some ad-
vantage but is not able to extract the entire surplus. This
result is intuitive since the offers are moderated by the
possibility that the other player may become the proposer
following a rejection and this position confers an advan-
tage. Thus, players split the surplus available in state k in
a way that depends on their patience and the probability
of winning.

5.2 Comparative Statics

Since computing the closed form solution for an arbitrary
N analytically is demanding and the resulting expressions
unwieldy, I analyze the effect of varying the parameters
of the models with computer simulations, which have the
added benefit of examining the effects of simultaneous
changes on the optimal offers. Even under complete in-
formation we obtain several insights into the dynamics of
wartime negotiation and the incentives to conclude a bar-
gain and end the war before the ultimate destruction of
either side. I begin with a simple illustrative case.

Example 5.1. Let N = 10, π = 1, b1 = .3, b2 = .4,
with δ = .95, and p = .4. Table 1 shows the optimal
offers in each of the non-terminal states in addition to
the expected payoffs from fighting to the end.

This table demonstrates three important properties of
optimal offers in MPE. First, both proposal and accep-
tances yield strictly higher payoffs than fighting to the
end. Second the player who gets to make the offer enjoys
proposal power and is able to extract a larger share, as
common to bargaining models that use the alternating-
offers protocol. Third, payoffs are strictly increasing in
state for player 1 and strictly decreasing for player 2.

For example, consider k0 = 6. If player 1 gets to pro-
pose first, it offers (and player 2 accepts) x∗6 = .359. On
the other hand, if player 2 is the proposer, player 1 will
accept π − y∗6 = .355. In either case, settling is prefer-
able to fighting to the end, which is W 1

6 = .270. Similar
calculations hold for player 2.

An important finding is that under complete informa-
tion there always exists a vector of optimal offers, which
are made and accepted in the unique Markov SPE. In other

words, regardless of the distribution of power, the mil-
itary advantage, the status quo flow of benefits, or the
costs of fighting, states always end the war with a negoti-
ated settlement immediately.

Figure 1 shows the optimal offers depending on the mil-
itary position for four cases: (a) high cost for player 1,
low cost for player 2, little discounting; (b) high cost for
player 1, low cost for player 2, high discounting; (c) low
cost for player 1, high cost for player 2, little discounting;
and (d) low cost for player 1, high cost for player 2, high
discounting.

Several findings emerge from these plots. First, player
1’s offers are non-decreasing in k. In other words, as
its military position improves, player 1 demands (and re-
ceives) a larger share of benefits. This finding holds re-
gardless of the probability of winning individual engage-
ments. On the other hand, as this probability increases,
so do the proposals. That is, if player 1 is more likely
to win any individual battle, then, ceteris paribus, it will
demand a larger share of benefits.

This expansion of war aims can be dramatic. Consider,
for example, case (a) where, despite the higher cost of
fighting, player 1’s demand increases from less than .1
to .5—even when the player is close to losing the war
(k = 1)—when p increases from .01 to .99. When player
1 is close to winning at k = 19, the equilibrium proposal
jumps from a little over .3 when p = .01, to almost the
entire flow of benefits at p = .99.

Perhaps not surprisingly, when the balance of power
does not favor either player (p is close to .5), then there is
a range of military positions (roughly 6 ≤ k ≤ 12), where
player 1 does not expand its demands much. This is ev-
ident in the nearly flat spot on the surface of all graphs.
The reason for this is intuitive: With the balance of power
at parity, gains on the battlefield do not translate into cor-
responding bargaining strength as long as the military po-
sition is not too advantageous for the player.

The second finding concerns the effect of fighting costs,
or, more generally, the costs of disagreement. Consider
cases (a) and (c) in Figure 1. In the first example, player
1’s cost is relatively high: no benefits while fighting lasts,
while player 2 is able to obtain some nonzero utility while
fighting. Even though player 1 is close to complete defeat
at k = 1, it can demand a strictly positive share of bene-
fits. That is, the eventual settlement yields a flow of bene-
fits that is larger than the wartime payoff. This holds even
if the player is unlikely to prevail in individual battles. On
the other hand, in the second example, player 1’s costs
are relatively low: it receives a wartime payoff of .3, while
its opponent receives nothing. However, when player 1
is close to defeat and is not very likely to win individual
engagements, it will settle for less than its wartime pay-
off. This situation is the reverse of the one observed in
the previous case. Here, it is player 2 who is nearing com-
plete victory and, since it values the future highly, can
afford to absorb the high costs of fighting and therefore
demand larger concessions from player 1. Because defeat
is close and likely, and because it also values the future
highly, player 1 is induced to concede. However, player
1’s bargaining position is still stronger in case (c) than in
case (a), which can be clearly seen for any position k and
any distribution of power p.

The third finding is the quite significant effect of dis-
counting. Although the present model does not allow us
to assess the impact of different discount factors, we can
nevertheless draw conclusions about the effect of valuing
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Table 1: MPE Offers and Payoffs to Fighting to the End.

k x∗k π −y∗k W 1
k y∗k π − x∗k W 2

k

1 .083 .069 .052 .931 .917 .900
2 .142 .140 .096 .860 .858 .815
3 .204 .191 .137 .809 .796 .742
4 .251 .247 .176 .753 .749 .677
5 .306 .295 .218 .706 .694 .617
6 .359 .355 .270 .645 .641 .556
7 .435 .424 .344 .576 .565 .484
8 .539 .535 .461 .465 .461 .387
9 .715 .702 .658 .298 .285 .241

the future on bargains. Figure 2 illustrates the effect un-
der varying disagreement costs, holding the distribution
of power favoring player 1 significantly at p = .8.

Another remarkable fact is the somewhat counter-
intuitive role played by the discount factor in the calcu-
lations of the players. Generally speaking, if a player ex-
pects to do well in the war, either because its probability
of winning a particular fight is high or because it is near
to total victory, then reducing the discount factor lowers
its expected payoff from fighting until the end. In other
words, a strong player that is impatient would settle for
less than a more patient one. Conversely, its weak oppo-
nent benefits in this case. More generally, if a player does
not expect to do well in the war, either because its prob-
ability of winning individual fights is low or because it is
close to defeat, being less patient improves its expected
payoff from fighting until the end.

Of particular interest here are the plots for the high
discount factors δ = .63 and δ = .9. Notice how valu-
ation of the future works against player 1 in situations
where defeat is likely but how it reverses its effect, which
is especially pronounced when disagreement costs actu-
ally favor the other player. The intuition is straightfor-
ward here: When players evaluate the future almost as
much as the present, then disagreement costs do not play
a large role when the military resolution of war is at hand.
That is, when players care much about the eventual out-
come, and that outcome is favorable, the interim payoffs
do not matter much because they are outweighed by the
benefits of the outcome forever after. If, conversely, play-
ers care more about the present, then the proposals are
mainly determined by the disagreement costs and the bal-
ance of power, and do not depend much on the military
situation. This is clear from the nearly flat plots in those
cases. Such situation is hard to imagine substantively be-
cause it would imply that neither player is very much con-
cerned with the payoffs from obtaining peace. The rest of
this paper, therefore, will analyze the case where players
care much about the future.

It is worth noting the particularly great expansion of
war aims when the probability of winning is high, when
total victory is near (or, conversely, the dramatic contrac-
tion when probability of winning is low and total defeat is
close), and when players discount the future significantly.
With such wartime dynamics, it should be clear that the
player on the losing side has incentives to seek a negoti-
ated settlement well before the war becomes clearly not
winnable. On the other hand, the winning player’s de-
mand depend on the disagreement costs, and thus this
player also has incentives to settle sooner in order to
avoid the costs associated with prolonging the conflict.

6 Conclusion

Lemma 5.1 established that in any MPE players never of-
fer or accept less than what they expect to obtain if they
fight the war to its bitter end. Because conflict is costly,
the expected payoffs from the ultimate resolution always
sum to less than the flow of benefits, which gives both
players incentive to negotiate an agreement immediately
(Claim 4.1). This result formalizes the intuition that fight-
ing can cease as soon as both sides agree on the expected
outcome of war. Remarkably, it closely matches a claim
made almost 200 years ago:

Not every war need be fought until one side col-
lapses [...] Of even greater influence on the deci-
sion to make peace is the consciousness of all the
effort that has already been made and of the ef-
forts yet to come. Since war is not an act of sense-
less passion but is controlled by its political ob-
ject, the value of this object must determine the
sacrifices to be made for it in magnitude and also
in duration. Once the expenditure of effort ex-
ceeds the value of the political object, the object
must be renounced and peace must follow.

We see then that if one side cannot completely
disarm the other, the desire for peace on either
side will rise and fall with the probability of further
successes and the amount of effort these would re-
quire. If such incentives were of equal strength
on both sides, the two would resolve their polit-
ical disputes by meeting half way. If the incen-
tive grows on one side, it should diminish on the
other. Peace will result so long as their sum total
is sufficient—though the side that feels the lesser
urge for peace will naturally get the better bargain
(Clausewitz 1832, pp. 91-2, emphasis mine).

Demands may or may not be constrained by the mili-
tary situation: If war is sufficiently costly, then the bar-
gaining range is virtually unconstrained. Thus, winning
battles does not automatically translate into bargaining
advantage. Therefore, under certain conditions, one can-
not expect that victors necessarily expand their war aims;
and, more importantly, unless sufficiently close to victory,
states with great military advantage cannot translate it
into a better bargaining position.

The complete information case can be treated as the
situation in which both players agree on the probability
of winning battles and are also perfectly aware of each
other’s costs. The efficient result stated in Proposition 5.3
confirms the intuition that wartime negotiations will end
fighting whenever adversaries agree on the possible out-
come. Note in particular that even though warfare fol-
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lows a stochastic process, the agreement on its parame-
ters allows both players to “predict” the likely outcome
and therefore offer acceptable bargains. This makes out-
comes “irreversible” in the sense that both players can
calculate the expected payoffs and agree on them, giving
formal support to Blainey’s (1988) claim that wars end
when both sides agree on their relative power.

Simply because war is a sequence of battles with prob-
abilistic outcomes does not imply that states will have
any difficulty finding mutually satisfactory bargains. Rel-
ative strength, as expressed in the probability of winning
individual battles and in the costs of disagreement, de-
termines the bargains that are mutually satisfactory (in
the sense that they are preferable to fighting). Rationality
then requires that states conclude such bargains even if
they do not like the terms, which is what happens in the
unique equilibrium. This suggests that we should look at
problems arising from lack of complete information.

In models of intrawar bargaining, the central function
of fighting is to reveal private information either about
the type of opponent or about the distribution of power.
These models generally predict that as fighting continues
and states update their beliefs about the relevant param-
eters, settlement becomes more likely. The model with
endogenous war aims, on the other hand, posits that as
states draw closer to victory, they may expand their de-
mands in reflection of their relative military advantage
gained from battlefield success. In the unconstrained
model here, the losing side can always settle by offering
the necessary amount to make its opponent indifferent
between fighting to a total victory and accepting the pro-
posed division. On the other hand, it is not difficult to
imagine how constraints on what can be offered, e.g. do-
mestic or ideological, may prevent the losing side from
making an optimal offer, in which case it may prolong
fighting in the hope that its fortunes of war will reverse.
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A The Closed Forms of Wi
k

In this section, I derive the closed form of the expected
payoffs from fighting until the bitter end as specified in
Definition 4.1. The functions Wi

k are second-order lin-
ear recurrence relations that we can solve by applying
the usual techniques for solving difference equations. To
simplify notation, let a = δp, b = δ(1 − p), and divide
through by a to obtain the standard form10

W 1
k+2 −

1
a
W 1
k+1 +

b
a
W 1
k =

−(1− δ)b1

a
(2)

The homogenous equation for (2) is

W 1
k+2 −

1
a
W 1
k+1 +

b
a
W 1
k = 0 (3)

We shall try a solution of the form W 1
k = mk. Substitut-

ing and dividing through by mk yields the characteristic
equation

m2 − 1
a
m+ b

a
= 0

which has the solutions

m1 = 1+√1− 4ab
2a

m2 = 1−√1− 4ab
2a

10I assume that both a and b are nonzero for otherwise the
solution is trivial and uninteresting.

Note that 1 − 4ab = 1 − 4δ2p(1 − p) ≥ 0. The two roots
are distinct as long as 1− 4δ2p(1− p) ≠ 0, or as long as,
since δ ≥ 0,

δ ≠
1
2

√
1

p(1− p) (4)

However since the function on the RHS attains a minimum
of 1 at p = 1

2 , it follows that this condition is satisfied for
all δ < 1.11

The general solution to (3) has the form W 1
k = A1mk

1 +
A2mk

2 where A1 and A2 are some arbitrary constants. We
shall use the fact that the sum of the general solution to
the homogenous equation and any particular solution to
(2) yields the general solution we need (Goldberg 1986,
Theorem 3.6). To find such a particular solution, we try a
form W 1

k = A3:

A3 − 1
a
A3 + baA3 = A3

(
a+ b − 1

a

)

For this to be a solution, we must have

A3

(
a+ b − 1

a

)
= −(1− δ)b1

a

which yields A3 = b1. Thus, the general solution to (2)
has the form

W 1
k = A1mk

1 +A2mk
2 +A3 (5)

Using the boundary conditions W 1
0 = 0 and W 1

N = π , we
can find the constant coefficients A1 and A2:

W 1
0 = A1m0

1 +A2m0
2 + b1 = A1 +A2 + b1 = 0

W 1
N = A1mN

1 +A2mN
2 + b1 = π

Thus, −A2 = A1 + b1 and

A1 =
π − b1

(
1−mN

2

)
mN

1 −mN
2

Substituting in (5) and rearranging terms yields the solu-
tion we want:

W 1
k =

[
π − b1

(
1−mN

2

)](mk
1 −mk

2

mN
1 −mN

2

)
+b1

(
1−mk

2

)
(6)

Hence, (6) is the complete solution to (2). W 1 is strictly
increasing in k, p, b1, and π .

To calculate the equivalent closed form for W 2
k , note

that the standard form is very similar to (2):

W 2
k+2 −

1
a
W 2
k+1 +

b
a
W 2
k =

−(1− δ)b2

a
(7)

Since the homogenous equation is therefore the same, it
follows that the roots of the characteristic equation are
also the same. Hence, the general solution is

W 2
k = B1mk

1 + B2mk
2 + B3

11It is not difficult to verify that the derivative of the RHS is

2p − 1

4p2(1− p)2
√

1
p(1−p)

and is zero at p = 1
2 , negative for p < p, and positive for p > p.

The second derivative, although harder to calculate, equals 4 at
p, and so the function attains a minimum there.

9



where B1, B2, and B3 are some constants. For the particu-
lar solution to work, we must have

B3

(
a+ b − 1

a

)
= −(1− δ)b2

a

which yields B3 = b2. Using the boundary conditions, we
can find the other coefficients:

W 2
0 = B1m0

1 + B2m0
2 + b2 = B1 + B2 + b2 = π

W 2
N = B1mN

1 + B2mN
2 + b2 = 0

which yields B2 = π − b2 − B1 and

B1 = −πmN
2 − b2(1−mN

2 )
mN

1 −mN
2

Substituting and rearranging terms yields the solution we
want:

W 2
k =

[
−πmN

2 − b2

(
1−mN

2

)](mk
1 −mk

2

mN
1 −mN

2

)

+πmk
2 + b2

(
1−mk

2

)
(8)

Hence, (8) is the complete solution to (7). W 2 is strictly
decreasing in k, and in p, and strictly increasing in b2,
and in π .

B Calculating Ri(x, t)

In this section, I derive the expected payoffs from (x, t),
an agreement on partition x reached in period t. The
discussion below concerns player 1’s payoffs, those for
player 2 are computed in an analogous way.

B.1 Probability of Ending in the nth Period

We first need to know the probability of winning (los-
ing) in exactly n steps when starting from k0. Consider
the probability that player 1 wins, that is, the probabil-
ity of hitting N in the nth step when starting from k0.
For convenience, we shall call intermediate victories right
steps, and intermediate defeats left steps, denoted by r
and l respectively. Clearly, n = r + l. Also, since the
total displacement to the right is N − k0, it follows that
r − l = N − k0. Therefore, r = 1

2 (n − k0 +N). The prob-
ability associated with one path that visits N from k0 in
the nth step is pr (1− p)l, or

p
1
2 (n−k0+N)(1− p) 1

2 (n+k0−N) (9)

Similarly, for paths that end in defeat for player 1 after
n steps, the total displacement to the left is k0, and so
l − r = k0. Then, n = r + l ⇒ r = 1

2 (n − k0), and l =
1
2 (n+ k0), which yields the associated probability

p
1
2 (n−k0)(1− p) 1

2 (n+k0) (10)

The probability of ending at N in n steps starting from
k0 is thus pr (1−p)l times the number of paths that lead
from k0 to N. There are

(
n
r

)
ways to choose paths with r

right steps from n steps available. Unfortunately, some of
these paths may be inadmissible because they may visit

N earlier or they may visit 0. Since these are absorbing
states, the game ends. We need to find a way to exclude
these invalid paths and only count the remaining ones,
which we shall call valid. To that end, we want to know
how many paths of length n that start from k0 visit N for
the first time in their nth step without visiting 0 at any
time. (We also want to know how many paths of length n
visit 0 for the first time in their nth step without visiting
N but this quantity can be calculated using the formula
for the other paths.)

B.2 An Example of Counting Paths

Let Mn(a,b) =
(
n
r

)
, where r = 1

2 (b − a + n), denote the
number of paths which start from a, end in b, and have r
rightward steps. Also, let On(a,b) ≤ Mn(a,b) denote the
number of valid paths.

To illustrate the logic that follows, we shall make use
of an example with N = 5 and k0 = 2. The shortest path
is therefore N − k0 = 3 right steps. Consider first n = 3.
There is exactly M3(2,5) =

(
3
3

)
= 1 path, and it is clearly

valid. More generally, it is easy to see that the shortest
path will always be valid. Thus, O3(2,5) = 1.

Noting that all paths that end at N will have an odd
number of steps in this case, consider next n = 5, which
implies r = 4, l = 1. There are M5(k0,N) =

(
5
4

)
= 5 paths

that start from k0 and finish at N that are of length 5. We
want to know how many of those are valid. Since there is
no way to reach 0 with only one left step from k0, we only
need examine the paths that might reach N “too early.”
The only way this can happen is in paths that visit N in
their third (right) step. From the preceding paragraph,
there’s exactly 1 such path. Conditional then on having
reached N in three steps, how many ways are there that
return to N in two more steps (one right and one left)?
There are exactly M1(N,N) =

(
2
1

)
= 2 such paths. There-

fore, the number of invalid paths is 2× 1 = 2, and so the
total number of valid paths that start at k0 and visit N in
their 5th step for the first time, is O5(2,5) = 5− 2 = 3.

We confirm the result by inspection. The five possible
paths are

(2,3,4,5,6,5) (2,3,4,5,4,5) (2,3,4,3,4,5)
(2,3,2,3,4,5) (2,1,2,3,4,5)

Of these, the first two are clearly invalid because they
both visit 5 for the first time in their third step instead
of the fifth. Notice that once 5 is visited in the third step,
there are only two ways to return to it, as obtained above.

Consider now n = 7. We have r = 1
2 (5 − 2 + 7) = 5,

and so M7(2,5) = 21. How many of these are invalid?
There are two ways to reach N too early: in 3 steps and
in 5 steps. We already know that there are O3(2,5) = 1,
and O5(2,5) = 3 distinct valid such paths. Conditional on
having reached N in 5 steps, there are M2(N,N) = 2 ways
to return to N in two more steps (here, we make use of the
fact that reaching N in 5 steps requires 4 right and 1 left
steps, and so we have r−4 = 1 right and l−1 = 1 left steps
remaining). Thus, there areO5(2,5)×M2(N,N) = 3×2 = 6
invalid paths that visit N in their fifth step. Similarly,
conditional on having visited N in the third step, there
are M4(N,N) = 6 ways to return to N in four more steps
(here, we make use of the fact that reaching N in 3 steps
requires 3 right and no left steps, and so we have r−3 = 2

10



right and l − 0 = 2 left steps remaining). Thus, there are
1× 6 = 6 invalid paths that visit N in their third step.

This makes a total of 12 invalid paths that visit N too
early. However, these do not include paths that might
have also visited 0, and which would also be invalid. With
two left steps, there is only one such path, which we must
also exclude. This brings the total of invalid paths to 13.
We therefore conclude that there are O7(2,5) = 21−13 =
8 valid paths. The 21 possible paths are

(2,3,4,5,6,7,6,5) (2,1,2,3,4,5,4,5)
(2,3,4,5,6,5,6,5) (2,3,4,3,4,5,6,5)
(2,3,4,5,4,5,6,5) (2,3,2,3,4,5,6,5)
(2,3,4,5,6,5,4,5) (2,1,2,3,4,5,6,5)
(2,3,4,5,4,5,4,5) (2,3,4,3,4,5,4,5)
(2,3,4,5,4,3,4,5) (2,3,2,3,4,5,4,5)

(2,1,0,1,2,3,4,5) (2,1,2,3,4,3,4,5)
(2,1,2,3,2,3,4,5)
(2,1,2,1,2,3,4,5)
(2,3,4,3,4,3,4,5)
(2,3,4,3,2,3,4,5)
(2,3,2,3,4,3,4,5)
(2,3,2,3,2,3,4,5)
(2,3,2,1,2,3,4,5)

The realizations in the upper 6 entries first column are in-
valid because their first visit to N is in three steps and, as
we calculated above, there are 6 such paths. The paths in
the upper 6 entries in the second column are invalid be-
cause their first visit to N occurs in their fifth step. There
are also 6 such paths. Finally, the path in the lower part
of the first column is invalid because it visits 0. The eight
remaining paths are the only valid ones that visit N for
the first time in the seventh step without visiting 0.

Consider now n = 9, and so r = 6, l =
3, and M9(2,5) = 84. How many of these are invalid?
There are three ways to reach N too early: in 3, 5, or 7
steps, with O3(2,5) = 1, O5(2,5) = 3, and O7(2,5) = 8
distinct valid paths respectively. Again, we condition on
visiting N early to calculate the number of invalid paths.
Conditional on having reached N in three steps, there are
M6(N,N) = 20 ways to return to N in six more steps (here
we make use of the fact that reaching N for the first time
in three steps requires three right and no left steps, and
so we have r − 3 = 3 right and 3 left steps remaining).
Thus, there are 1 × 20 = 20 invalid paths that visit N for
the first time in their third step. Conditional on having
reached N in five steps, there are M4(N,N) = 6 ways to
return to N in four more steps (here we make use of the
fact that reachingN for the first time in five steps requires
four right and one left step, and so we have r − 4 = 2
right and l − 1 = 2 left steps remaining). Thus, there are
3 × 6 = 18 invalid paths that visit N for the first time in
their fifth step. Finally, conditional on having reached N
in seven steps, there are M2(N,N) = 2 ways to return to
N in two more steps (again making use of the fact that
reaching N for the first time in seven steps requires five
right and two left steps, thus leaving r − 5 = 1 right and
l−2 = 1 left steps). Therefore, there are 8×2 = 16 invalid
paths that visit N for the first time in their seventh step.

This makes a total of 54 paths that visit N too early
using a valid path. How many of the remaining 30 paths

visit 0? Note that all these paths visit N for the first time
in their ninth step because the procedure above has al-
ready excluded paths that visit 0 and visit N too early.
Therefore, we need to know how many paths that visit N
for the first time in their ninth step also visit 0.

By the reflection principle, we can calculate the num-
ber of paths that reach N in their ninth step, and that
visit 0 at some point. Since all such paths must visit 0
at some point for the first time, reflecting the segment
prior to that visit about 0 yields a one-to-one correspon-
dence, and so the number is the same as the number of
paths that start from −k0 and visit N in their nth step:(

n
1
2 (n+N−(−k0))

)
. In our case, we have

(
9
8

)
= 9 such paths.

Thus, the number of distinct valid paths is O9(2,5) =
84 − 54 − 9 = 21. It is important to note here that
it is not the case that we are double counting paths.
When we calculate the number of paths that visit 0, we
are including paths that might also visit N before the
9th step. For example, one such path would be s =
(2,1,0,1,2,3,4,5,4,5). So the question is: Since it is a
path that visits N too early (in its seventh step), is it not
excluded already by our procedure above? If this were
the case, we would have a problem with subtracting the
same path twice, once in the procedure that eliminates
paths that visit N too early, and again in the procedure
that eliminates paths that visit 0. Fortunately, this is not
the case.

The reason the procedure that eliminates early hits did
not remove the path s from the list is because the path
that reaches N in seven steps is not valid, and so it is
not included in the number O7(2,5). It is invalid be-
cause the relevant segment given by the sequence of steps
(2,1,0,1,2,3,4,5) visits 0, and so was eliminated during
the previous step. The procedure that eliminates early
hits for n = 9 considers only valid paths that reach N
early. Thus, the recursive definition of the elimination
procedure avoids double-counting paths. (Is this neat or
what!)

There is only one problem left that we need to deal
with. With a high n, there will be paths that are counted
twice by the above exclusion algorithm: these are the
paths that visit N early and then visit 0 before visiting
N in the nth step. For example, for n = 13, the path
(2,3,4,5,4,3,2,1,0,1,2,3,4,5) does just that. Since the
segment (2,3,4,5) is a valid way to reachN in three steps,
it will be included in the counting, which then multiplies
that number by the number of ways to reach N from N in
10 more steps. That number will include the remainder
of the path. However, since this includes 0, the path will
also be counted by the procedure that excludes paths that
visit 0, thus subtracting it twice.

The solution is to exclude all paths that visit 0 when
counting the ways to revisit N in the remaining number
of steps. This is straightforward: in the above example,
the number of ways to revisit N in 10 steps is

(
10
5

)
=

252. By the reflection principle, the number of paths that
visit 0 among these equals

(
10

1
2 (10+2N)

)
= 1, and so there

is precisely one path that is counted twice. The following
section states the above algorithm generally and formally.

B.3 Counting Valid Paths: General Formula

As before, let Mn(a,b) =
(
n
r

)
denote the number of paths

of length n with r = 1
2 (b − a + n) rightward steps such
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that the initial state is a, and the ending state is b. A path
of length n which starts from k0 and visits N for the first
time in its nth step without visiting 0 is called valid. Let
On(k0,N) denote the number of valid paths of length n,
and define it recursively for all n > 0, where n even (odd)
if N − k0 is even (odd),

On(k0,N) = 0 if n < N − k0

On(k0,N) = 1 if n = N − k0 (11)

On(k0,N) = Mn(k0,N)−Mn(−k0,N)

−
r−1∑
i=1

On−2i(k0,N)
[
M2i(N,N)−M2i(−N,N)

]

where r = 1
2 (N − k0 + n). On(k0,N) is nondecreasing in

n whenever defined. That is, the number of valid paths
from of length n cannot be smaller than the number of
valid paths of shorter length.

To find the number of paths of length n that start from
k0 and visit 0 for the first time in their nth step with-
out visiting N, note that by the reflection principle this
is equivalent to finding the number of paths of length
n that start from N − k0 and visit N for the first time
in their nth step without visiting 0 with the numbers of
right and left steps reversed. To see this, consider the to-
tal displacement to the left, which is k0, and which yields
r ′ = 1

2 (n − k0) right steps, and l′ = 1
2 (n + k0) left steps

in these paths. In a path that starts from N − k0 and
reaches N in its nth step, the corresponding values are
r = 1

2 (n− (N − k0)+N) = 1
2 (n+ k0), and l = 1

2 (n− k0),
as we would intuitively expect.

Thus, let On(k0,0) denote the number of valid paths
(i.e. that are of length n, that visit 0 for the first time in
their nth step, and that do not visit N) of length n, and
define it as

On(k0,0) = On(N − k0,N) (12)

Note that if N − k0 is even, then On(k0,N) = 0 for all n
odd, and if N − k0 is odd, then On(k0,N) = 0 for all n
even. Similarly, if k0 is even, then On(k0,0) = 0 for all n
odd, and if k0 is odd, then On(k0,0) = 0 for all n even.
We can now turn to calculating the expected payoff from
(x, t).

B.4 Calculating the Payoffs

Using (9) and (11), the probability of ending at N in period
t, but not before, is

pt(N) = Ot(k0,N)p
1
2 (t−k0+N)(1− p) 1

2 (t+k0−N)

Similarly, using (10) and (12), the probability of ending at
0 in period t, but not before, is

pt(0) = Ot(N − k0,N)p
1
2 (t−k0)(1− p) 1

2 (t+k0)

The probability that the stochastic process ends exactly at
some time t, but not before, is simply the probability that
it visits either one of the absorbing states at that time:

P(t) = 1− (1− pt(N)) (1− pt(0)) = pt(N)+ pt(0)
where the second equality follows from the fact that
reaching N and reaching 0 are mutually exclusive events.
As we would expect, P(t) is strictly decreasing for all
t ≥ min{k0,N − k0} and is 0 everywhere else. Finally,

the probability that the stochastic process does not end
until period t is the complement of the probability that it
ends in some period prior to t. Since the events of ending
in any period t but not before are mutually exclusive, we
can simply sum over the their associated probabilities to
find the probability that the process ends in some period
prior to t. Thus, the probability of continuing until t is

1−
t∑

τ=0

P(τ)

The summation ends with t, rather than t − 1 because if
the game is not to end until period t starting from period
0, exactly t fights will occur. Since limt→∞

∑t
τ=0 P(τ) = 1,

the probability that the game will continue for a very large
number of periods goes to zero.

Given that the process ends in period t, player 1’s ex-
pected payoff is the lottery between π and 0, which is
simply

πpt(N)
pt(N)+ pt(0) +

(0)pt(0)
pt(N)+ pt(0) =

πpt(N)
P(t)

Player 1’s expected payoff from (x, t) is the payoff from
the distribution x agreed on at time t times the proba-
bility that the game lasts until t plus the expected payoff
from victory and defeat in some period prior to t times
the probability that this event occurs. Since P(0) = 0, we
have

R1(x, t) =

1−

t∑
τ=0

P(τ)


[(1− δt)b1 + δtx

]

+
t∑

τ=0

P(τ)
[
(1− δτ)b1 + δτπ pτ(N)P(τ)

]

Note that R1(x,0) = x, and that for all t < min{k0,N −
k0}, R1(x, t) = (1−δt)b1+δtx because for such t, P(t) =
pt(N) = pt(0) = 0. That is, the expected payoff in this
case is simply the average of the per-period disagreement
payoff and x, as in standard models with inside options.
This is because the probability that the game reaches one
of the absorbing states for such small t is zero.

Analogous calculations yield the expression for
R2(x, t), player 2’s payoff from partition x in period t.
R1(·) is strictly increasing in x, and R2(·) is strictly de-

creasing in x. Also, limt→∞ Ri(·, t) = Wi. That is, in the
limit, the expected payoff from (x, t) converges to the ex-
pected payoff from fighting to the end. To get some fur-
ther insight into the behavior of the payoff functions, re-
fer to Figure 3. Notice that the Ri(x, t) is non-monotonic
in t, where its behavior depends on the value of x, and
which is not surprising. Consider player 1’s expected pay-
off from (x, t) where x is a small partition (e.g. .1 in this
example) and t is also small (e.g. 12). In this case, fighting
to the end actually promises a better payoff because the
probability of complete victory increases the expectation.
On the other hand, when x is very large (e.g. .9), any delay
is costly, and, for larger t, it is significantly so because the
probability of defeat reduces the expected payoff.

C Proofs

Proof of Lemma 5.2. Since w ≠ 0, it is sufficient to
establish that A−1 exists. A can be partitioned into four
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square submatrices:

A =
(

I M
M I

)

where I is the identity matrix of size n and M is a n × n
matrix with the following structure:




0 δp 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
δ(1−p) 0 δp 0 . . . . . . . . . . . . . . . . . . . . . . . . 0

0 δ(1−p) 0 δp 0 . . . . . . . . . . . . . . . . . . . 0
...
. . .

. . .
. . .

. . .
. . .

...
0 . . . . . . . . . . . . . . . . . . . . . . 0 δ(1−p) 0 δp

0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 δ(1−p) 0




In words, M’s diagonal elements are 0, the lower off-
diagonal elements are δ(1 − p), the upper off-diagonal
elements are δp, and the rest are all 0. Thus, each ele-
ment of M is nonnegative and the sum of the entries in
each column is less than 1.

Consider M2. The first and last diagonal elements are
δ2(1 − p)p and the rest are 2δ2(1 − p)p. The lower off-
diagonal elements, next to the 0s, are all δ2(1 − p)2, and
the upper off-diagonal elements, again next to the 0s, are
all δ2p2. Thus, each element of M2 is nonnegative. To
see that the sum of entries in each column is less than 1,
note that there can be at most five cases to consider: the
first two columns, the last two columns, and the middle
columns, which have the same sum. However, since the
sum of elements in a middle column exceeds the sum in
the other four cases because it always includes all cor-
responding terms plus an additional positive one, the
required result follows from considering only this case,
where the sum is given by

δ2p2 + 2δ2(1− p)p + δ2(1− p)2 = δ2 < 1

By Theorem 8.13 in Simon & Blume (1994, p. 175), if
M2 is a n × n matrix with the properties that M2 ≥ 0
and the entries in each column sum to less than 1, then
(I−M2)−1 exists and has only nonnegative entries. Thus,
det(I−M2) ≠ 0.

It can be shown that det A = det(I −M2).12 It then fol-
lows that det A ≠ 0, and so the inverse exists. This estab-
lishes the result. Q.E.D.

Proof of Proposition 5.3. Consider player 1’s pro-
posal at some arbitrary time 2t. Denote the current state
by k. If player 1 follows the equilibrium strategy, its pay-
off is x∗k . If it deviates and proposes some x < x∗k , then
player 2 accepts, which leaves player 1 worse off. There-
fore, such deviation is not profitable. Suppose now player
1 offers some x > x∗k , which player 2 always rejects. In
that case, player 1’s payoff is

(1− δ)b1 + δ
(
π − py∗k+1 − (1− p)y∗k−1

)
Suppose this deviation is profitable. From the definition
of x∗k from (1), this would then imply

(1− δ)b1 + δ
(
π − py∗k+1 − (1− p)y∗k−1

)
> π − (1− δ)b2 − δ

(
py∗k+1 + (1− p)y∗k−1

)
12See Exercise 26.21 in Simon & Blume (1994, p. 735), which

establishes the result for a partition into four arbitrary square
matrices with the only requirement that the lower diagonal par-
tition forms a nonsingular matrix. In our case, this partition is I
with det I = 1.

or, after simplifying and rearranging terms,

(1− δ)b1 + δπ > π − (1− δ)b2

b1 + b2 > π

which is a contradiction because b1 + b2 ≤ π . This estab-
lishes that player 1 has no incentive to deviate by delaying
agreement one period. Therefore, by the principle of op-
timality,13 the proposal rule is optimal.

Consider now player 1’s acceptance rule at some ar-
bitrary time 2t + 1 and denote the current state by k.
Suppose y < y∗k , in which case player 1’s payoff is
π − y if it accepts. If player 1 deviates and rejects, then
its payoff is (1 − δ)b1 + δ

[
px∗k+1 + (1 − p)x∗k−1

]
. Since

π − y > π − y∗k = (1 − δ)b1 + δ
[
px∗k+1 + (1 − p)x∗k−1

]
,

it follows that such deviation is not profitable. Suppose
now that y > y∗k , in which case player 1 should reject,
getting a payoff of (1 − δ)b1 + δ

[
px∗k+1 + (1 − p)x∗k−1

]
.

Suppose player 1 deviates and accepts, in which case it
gets π −y < π −y∗k = (1−δ)b1+

[
px∗k+1+ (1−p)x∗k−1

]
.

Therefore, such deviation is not profitable. By the princi-
ple of optimality, the acceptance rule is optimal.

Thus, player 1’s strategy is optimal in every possible
subgame given that player 2 follows the strategy specified
in the proposition. The proof for player 2 is equivalent,
mutatis mutandis, and therefore the strategies constitute
a stationary no-delay Markov perfect equilibrium.

By Lemma 5.2, the vector with proposals is unique,
which implies that there exists at most one stationary no-
delay MPE. Q.E.D.

13See Fudenberg & Tirole (1991, pp. 108-10) for a proof of this
principle, which states that to verify whether a strategy profile
in a stage-game is subgame perfect, it suffices to check whether
players have an incentive to deviate from the strategy once and
thereafter conform to its prescription.
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(a) b1 = 0;b2 = .3;δ = .9 (b) b1 = 0;b2 = .3;δ = .5

(c) b1 = .3;b2 = 0;δ = .9 (d) b1 = .3;b2 = 0;δ = .5

Figure 1: Player 1’s equilibrium offers. N = 20, other variables as shown.
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(a) b1 = 0;b2 = .3 (b) b1 = .3;b2 = .3

(c) b1 = 0;b2 = .3

Figure 2: Player 1’s equilibrium offers for varying disagreement costs. N = 20, p = .8, other variables as shown.
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(a) R1(x, t)

(b) R2(x, t)

Figure 3: Expected payoffs from (x, t). The model parameters areN = 20, k0 = 12, p = .65, δ = .9, π = 1, b1 = .2, b2 = .25.
Note that in this case, W 1 ≈ .3 and W 2 ≈ .22.
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